
CMD: Classification-based Memory Deduplication
through Page Access Characteristics

Licheng Chen†§, Zhipeng Wei†§, Zehan Cui†§, Mingyu Chen†, Haiyang Pan†§, Yungang Bao†

†State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
§University of Chinese Academy of Sciences

{chenlicheng, weizhipeng, cuizehan, cmy, panhaiyang, baoyg}@ict.ac.cn

Abstract
Limited main memory size is considered as one of the major
bottlenecks in virtualization environments. Content-Based
Page Sharing (CBPS) is an efficient memory deduplication
technique to reduce server memory requirements, in which
pages with same content are detected and shared into a sin-
gle copy. As the widely used implementation of CBPS, Ker-
nel Samepage Merging (KSM) maintains the whole mem-
ory pages into two global comparison trees (a stable tree and
an unstable tree). To detect page sharing opportunities, each
candidate page needs to be compared with pages already in
these two large global trees. However since the vast major-
ity of pages have different content with it, it will result in
massive futile page comparisons and thus heavy overhead.

In this paper, we propose a lightweight page Classification-
based Memory Deduplication approach named CMD to re-
duce futile page comparison overhead meanwhile to detect
page sharing opportunities efficiently. The main innovation
of CMD is that pages are grouped into different classifica-
tions based on page access characteristics. Pages with simi-
lar access characteristics are suggested to have higher possi-
bility with same content, thus they are grouped into the same
classification. In CMD, the large global comparison trees are
divided into multiple small trees with dedicated local ones
in each page classification. Page comparisons are performed
just in the same classification, and pages from different clas-
sifications are never compared (since they probably result
in futile comparisons). The experimental results show that
CMD can efficiently reduce page comparisons (by about
68.5%) meanwhile detect nearly the same (by more than
98%) or even more page sharing opportunities.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full citation
on the first page. Copyrights for components of this work owned by others than ACM
must be honored. Abstracting with credit is permitted. To copy otherwise, or republish,
to post on servers or to redistribute to lists, requires prior specific permission and/or a
fee. Request permissions from permissions@acm.org.

VEE ’14, March 1–2, 2014, Salt Lake City, Utah, USA.
Copyright c© 2014 ACM 978-1-4503-2764-0 /14/03. . . $15.00.
http://dx.doi.org/10.1145/2576195.2576204

Categories and Subject Descriptors D.4.2 [Storage Man-
agement]: Main Memory; D.4.8 [Performance]: Measure-
ments

Keywords Memory Deduplication; Page Classification;
Page Access Characteristics

1. Introduction
Cloud computing becomes increasingly popular and com-
petitive both in industry and academia. In cloud computing,
multiple virtual machines (VMs) can be collocated on a sin-
gle physical server, and they can operate independently with
virtualization technology [16, 25], which is promising to
provide flexible allocation, migration of services, and better
security isolation. In the virtualization environment, physical
resources (such as processor, main memory) are managed by
a software layer called hypervisor (or Virtual Machine Mon-
itor, VMM), and the primary goal of a hypervisor is to pro-
vide efficient resource sharing among multiple co-running
virtual machines.

However, as the number of VMs collocated on a physi-
cal server keeps increasing (e.g. it can collocate up to 8 vir-
tual machines on a physical core in desktop cloud environ-
ment), meanwhile with the increasing size of working set of
applications running in a virtual machine, virtualization has
placed heavy pressure on memory system for larger capacity.
However, since the increasing speed of main memory capac-
ity falls behind with the demand, the limited main memory
size has been considered as one of the major bottlenecks to
consolidate more number of guest VMs on a hosting server
[17, 22]. Memory deduplication is an efficient technique to
alleviate the memory capacity bottleneck, which detects and
reduces page duplication to save memory. A large volume
of prior work has shown that there are great opportunities in
memory deduplicaion, e.g. Difference Engine [17] reported
absolute memory savings of 50% across VMs, and VMware
[29] reported about 40% memory savings.

Content Based Page Sharing (CBPS) is one of the most
widely used memory deduplication techniques to improve
memory efficiency, since CBPS can be performed transpar-
ently in the hypervisor layer and it doesn’t require any mod-

65

ification to guest operating systems (OS). In CBPS, a mem-
ory scanner is adopted to scan memory pages of guest VMs
periodically and to detect all identical pages that have same
content, these identical pages can then be shared into a sin-
gle physical page1, and the redundant memory pages can be
reclaimed and free back to the hypervisor. Thus CBPS can
efficiently reduce the memory footprint of guest VMs and
provide good opportunity to increase the number of VMs
collocated on a host server.

In this paper, we mainly focus on Kernel Samepage
Merging (KSM) [6], which is a widely-used implementation
of CBPS, and it has been integrated into the Linux kernel
archive [3]. In KSM, there are two global red-black compar-
ison trees for the whole memory pages of a hosting server,
named stable tree and unstable tree respectively. The stable
tree contains already shared pages with write-protected, and
the unstable tree contains only pages that are not shared yet
(without write-protected). In each scan round, each candi-
date page needs to be compared with pages already in these
two large global trees to detect page sharing opportunities.
We define the term futile comparison as the page content
comparison of a candidate page with other pages (both in
the stable tree and unstable tree), which fails to find any
page with the same content. Since KSM only maintains two
global comparison trees for the whole memory pages, each
global tree will contain a large number of nodes (or pages),
e.g. 1M nodes (4KB page) for 4GB memory. For each can-
didate page, it needs to be compared with a large number of
uncorrelated pages in the global trees, thus it will result in
massive futile page comparisons and heavy overhead. And
as the page scan performs repeatedly, the number of futile
page comparisons will increase proportionally.

In this paper, we propose a lightweight page Classification-
based Memory Deduplication approach named CMD to re-
duce futile comparison overhead meanwhile to detect page
sharing opportunities efficiently. In CMD, pages are grouped
into different classifications based on page access charac-
teristics. Pages with similar access characteristics are sug-
gested to have higher possibility with same content, thus
they are grouped into the same classification. And the large
global comparison trees are divided into multiple small trees
that there are dedicated local comparison trees in each page
classification. For each candidate page, its classification is
firstly determined based on its access characteristics (e.g.
write access count, write access distribution of sub-pages),
and then it is searched and compared with pages only in
the local comparison trees of its classification. Thus page
comparisons are performed just in the same classification,
and pages from different classifications are never compared,
since they probably result in futile comparisons. In this pa-
per, we mainly focus on page write access, which will mod-
ify page content and thus affect page sharing opportunities.

1 With all identical guest physical pages pointing back to the same machine
physical page in the hypervisor’s page table.

We monitor write access of pages with a hardware-snooping
based memory trace monitoring system, which is able to
capture all memory write references with fine cache-block
granularity, thus we can use not only the count of write
accesses for each page (coarse granularity), but also write
access distribution of sub-pages (fine granularity), which
will be a better hint for page classification. Additionally,
hardware-assisted page access monitor introduces negligible
overhead, thus our implementation of CMD is lightweight
and efficient.

Overall, we have made the following contributions:

• We perform a detailed profiling of KSM, we find that
page content comparisons contribute a certain portion of
the whole KSM run-time (about 44%). And futile com-
parisons contribute most of the page comparison over-
head (about 83%).

• To reduce futile comparison overhead meanwhile to
detect page sharing opportunities efficiently, we pro-
pose a lightweight page Classification-based Memory
Deduplication approach named CMD. In CMD, pages
are grouped into different classifications based on page
access characteristics, the large global comparison trees
are divided into multiple trees with dedicated local ones
in each classification. Page comparisons are performed
just in the same classification, and pages from different
classifications are never compared (since they probably
result in futile comparisons).

• We implement the CMD in our real experimental sys-
tem. The experimental results show that, compared with
the baseline KSM, the CMD can efficiently detect page
sharing opportunities (by more than 98%) meanwhile re-
duce the number of page comparisons (by about 68.5%),
and the futile comparison rate is also reduced by about
12.15% on average.

The rest of the paper is organized as follows: Section
2 introduces the background and motivation. Section 3 de-
scribes the design and implementation of page classification
based memory deduplication. We describe the experimen-
tal methodology in Section 4 and demonstrate experimental
results and discussion in Section 5. Related work and con-
clusion are in Section 6 and Section 7 respectively.

2. Background and Motivation
2.1 Kernel Samepage Merging

KSM (Kernel Samepage Merging) [6] is a scanning based
implementation of CBPS, which detects and shares pages
with same content into a single copy. Nowadays KSM is
implemented as a kernel thread, which periodically scans
memory pages of guest virtual machines co-running on a
hosting server. Each candidate page is compared content
with pages already in the comparison trees, and then it is
inserted into the global trees based on comparison result.

66

If multiple pages with same content are detected during a
scan round, one of the pages is selected as the KSM page (or
identical page), then other duplicate pages are merged and
shared with the single KSM page, which is implemented
by replacing the page table entries of duplicate pages to
map to the KSM page, and the original space of duplicate
pages are reclaimed and saved. Duplicated Pages are shared
with Copy-On-Write (COW) mechanism, which means that
all page table entries of duplicate pages are mapped with
read-only permission. If a VM attempts to write a shared
page, a page fault named COW fault will be triggered. The
hypervisor handles the fault by allocating a new page frame
and making a private copy of the page for the requesting
VM, then the VM writes data in this new private page.

Nowadays, KSM maintains only two global red-black
comparison trees for the whole memory pages of a hosting
server, as shown in Figure 1: the stable tree and the unstable
tree. Nodes of these two global trees are indexed directly
with the content of pages (as key of red-black nodes). The
stable tree maintains search structure for shared pages, while
the unstable tree maintains only pages that are not yet shared.
In each scan round, a candidate page is firstly compared
with pages in the stable tree. If there is a match with an
existed KSM page, the candidate page will be merged and
shared with this matched KSM page. Otherwise, it needs to
be further searched in the unstable tree: If there is a match
in the unstable tree, the matched page will be removed from
the unstable tree, then it will be merged with the candidate
page and migrated into the stable tree with write-protected;
if no match is found, the candidate page is inserted into the
unstable tree (as a leaf node). In each full scan round, the
unstable tree needs to be reconstructed, which means that
pages in the unstable tree need to be re-inserted into the
unstable tree to get the correct node position. This is because
that pages in the unstable tree are not write-protected, and
content of these pages might be modified during the scan
round. As the increasing capacity of main memory, the size
of these two global trees expands proportionally. Since KSM
does not take any page access characteristics into account,
for a candidate page, it needs to be compared content with
a large number of uncorrelated pages which will induce
massive futile comparisons.

There is a tradeoff of controlling the page scan speed of
KSM. Fast scan can detect more page sharing opportuni-
ties, especially for short-lived page-sharing, however it will
induce heavy CPU overhead due to frequent page content
comparisons. Slow scan, on the other side, might lose some
short-lived page sharing opportunities, but the CPU over-
head is relatively lightweight. In KSM, the kernel thread
scans pages of VMs in a batch-by-batch manner: all candi-
date pages are firstly separated into batches with each batch
having the same number of pages; after scanning all pages in
a batch, the KSM thread goes to sleep for a specified time;
then it continues to scan pages in the next batch. The scan

System
Memory

KSM
Scan

Page

… …

Global
Stable
Tree

… …

Global
Unstable

Tree

No identical
page found

Figure 1. The global stable tree and global unstable tree in
KSM. A candidate page is firstly searched and compared
with pages in the stable tree. If no match is found, it needs to
be further searched and compared with pages in the unstable
tree.

speed can be controlled by configuring the number of pages
in a batch (it is 100 by default) and the sleep time between
batches (20ms by default). Before a page is searched in the
unstable tree, the checksum of it is re-calculated and then
compared with its last checksum. The checksum serves as a
filter of page comparisons in the unstable tree: if the check-
sum remains the same, it is a candidate page, and the page
can be searched and compared with pages in the unstable
tree; otherwise, it is considered as a volatile page and it will
not be searched in the unstable tree. The computation of page
checksum also induces some CPU overhead to the system
(as shown in Figure 2).

2.2 Profiling of KSM

Table 1. KSM characteristics with different Configurations
Configuration C0 C1 C2 C3 C4 C5
Pages to scan
in each batch 100 200 400 800 1600 3200
Full scan time

(seconds) 400 200 100 50 25 12.5

Table 1 shows the KSM characteristics with different con-
figurations in our experimental system with 8GB memory
(please refer to Section 4 for detailed system configuration).
In KSM, there are two parameters that control scan-speed
which can affect KSM sharing efficiency and run-time over-
head: pages to scan and sleep millisecs, which represents
the number of pages to be scanned in a batch before the
KSM thread goes to sleep, and how many milliseconds of
time the KSM thread will sleep before turning to scan pages
of the next batch of respectively. We adopt the default value
of sleep millisecs as 20ms and vary pages to scan from 100
(default, as C0) to 3200 (as C5). For our experimental sys-
tem with 8GB physical memory, the corresponding of a full

67

0%

10%

20%

30%

40%

50%

60%

0%

20%

40%

60%

80%

100%

C0 C1 C2 C3 C4 C5

CP
U

Ut
ili

za
tio

n

Ru
nt

im
e O

ve
rh

ea
d

Br
ea

kd
ow

n
Page_Checksum Page_Comparison
Others CPU_Utilization

Figure 2. KSM run-time overhead breakdown and the CPU
Utilization of the KSM thread as the number of pages to be
scanned in a batch varied from 100 to 3200 with four guest
VMs collocated on the host server.

scan time is varied from 400 seconds to 12.5 seconds respec-
tively.

Figure 2 shows the KSM run-time overhead breakdown
and the CPU Utilization of the KSM thread as the number of
pages to be scanned in a batch varied from 100 (C0) to 3200
(C5) with four guest VMs collocated on the host server. We
can see that as the number of pages scanned in a batch in-
creasing, the CPU utilization increase correspondingly, it is
about 8.52% for C1, it increase up to 24.13% for C3 and
53.09% for C5. The induced CPU overhead will degrade the
performance of VMs, although it can find more page shar-
ing opportunities (as shown in Figure 3). The KSM run-
time overhead can be divided into 3 parts: page checksum,
page comparison, and others. Page checksum overhead rep-
resents the time spending on calculating checksum of candi-
date pages to check whether it is volatile; page comparison
overhead represents the time spending on page content com-
parison in both the global stable tree and unstable tree, and
others represent the other KSM run-time overhead, such as
inserting nodes in trees or removing nodes from trees, merg-
ing pages to be shared with COW, breaking COW when a
shared page is modified. We can see that the overhead of
page checksum and page comparison portions remain nearly
the same (they don’t not change with the scan speed). The
page comparison contributes about 44% and the page check-
sum contributes about 22% of the total KSM run-time, while
others contributes about 34%.

Figure 3 shows the number of page sharing opportunities
with 4 VMs as the number of pages to be scanned in a batch
varied from 100 (C0) to 800 (C3). The page sharing oppor-
tunities are varied with time as the phases of VMs changing.
We can see that, the KSM can detect more page sharing op-
portunities as scan-speed increasing, since it can detect more
short-lived page sharing in time. Normalized to C0, it can de-
tect about 1.63x of page sharing opportunities for C1, about
2.08x for C2, and about 2.088x for C3 respectively. We can
also see that, with 4 VMs running on our experimental sys-

0 2000 4000 6000 8000 10000 12000 14000
0

1

2

3

4

5

6

7
x 10

5

Time(Seconds)

of

 P
ag

e
Sh

ar
in

g
O

pp
or

tu
ni

tie
s

C0

C1

C2

C3

Figure 3. The number of page sharing opportunities with 4
VMs as the number of pages to scan in a batch varied from
100 (C0) to 800 (C3).

0 200 400 600 800 1000 1200 1400 1600 1800 2000
0

1

2

3

4
x 10

8

Time(Seconds)

of

 P
ag

e
Co

m
pa

ris
on

s

0 200 400 600 800 1000 1200 1400 1600 1800 2000

0.7

0.8

0.9

1

Fu
tile

 C
om

pa
ris

on
 R

at
e

Futile_Comparison
Total_Comparison
Futile_Rate

Figure 4. The number of total page comparisons and futile
comparisons as the KSM thread running with 4 VMs, where
KSM is configured to scan 400 pages and then sleep 20
milliseconds (default) in each batch.

tem, C2 with 400 pages scanned in a batch is fast enough to
detect almost all potential page sharing opportunities. Thus
in the latter of this paper, without particularly pointed out,
we will adopt C2 as our default KSM configuration.

Figure 4 shows the number of total page comparisons and
futile page comparisons as the KSM thread running with 4
VMs. We can see that, as the KSM thread scans and com-
pares pages periodically, the total number of page compar-
isons increases linearly. We can also see that although pe-
riodically repeated page comparisons can detect some ad-
ditional page sharing opportunities, most of them are futile
comparisons, which also increase almost linearly along with
page scans periodically. We define the term Futile Rate as
follows:

Futile Rate = Futile PC Num/Total PC Num (1)

Where Futile PC Num represents the number of futile
page comparisons (failed to find sharing page), and To-
tal PC Num represents the total number of page compar-
isons as periodically scans.

68

Page
Classify

Page Access
Characteristic

System
Memory

Page

Memory
Access
Monitor

Page
Classification

Manager

Classification 0

Classification 1

Classification 2

Classification 3

Figure 5. The page classification based memory deduplication implemented with KSM.

We can see that the Futile Rate is finally become steady
at about 83.64%. Thus we can conclude that: since nowadays
the KSM compares pages with two large global trees and it
does not take page access characteristics into account, most
of the page comparisons are futile and do nothing help to find
page sharing opportunities, thus it will induce heavy CPU
overhead (about 44% as shown in Figure 2). And our goal
of this paper is to reduce futile page comparisons overhead
meanwhile detect page sharing opportunities efficiently in
KSM page scans.

3. Classification-Based Memory
Deduplication

In this section, we firstly introduce the overview of page
Classification-based Memory Deduplication in subsection
3.1. Then we introduce a lightweight hardware-assisted ap-
proach to monitor page access characteristics in subsection
3.2. Finally, we introduce three different page classification
approaches and analyze their Pros and Cons in subsection
3.3.

3.1 Overview

Since the KSM simply maintains two global comparison
trees for all memory pages of a hosting server. To detect
page sharing opportunities, each candidate page needs to
be compared with a large number of uncorrelated pages in
the global trees repeatedly, which will induce massive fu-
tile comparisons. The key innovation to reduce futile com-
parison is to break the global comparison trees into multi-
ple small trees (with less page nodes in each one). Pages
are grouped into multiple classifications, with dedicated lo-
cal comparison tree in each page classification. A candidate
page needs only to be compared with pages in its local com-
parison tree of its classification, which contains less page
nodes. But the pages in its local tree are having much higher
probability to have same content with the candidate page,

thus it can reduce futile comparisons meanwhile detect page
sharing opportunities efficiently.

There are two requirements for page classification ap-
proaches: (1) pages with high probability to have same con-
tent should be grouped into the same classification, thus the
scan thread can detect page sharing opportunities in its local
classification tree, as efficient as scanning pages in the global
trees. And pages with low probability to have same content
should be separated into different classifications, thus they
will never be compared with each other. This can reduce fu-
tile page comparisons. (2) The page classification approach
needs to be balanced, which means that the number of page
nodes in each page classification should be nearly the same.
Unbalanced page classification will result in a few of page
classifications having large number of page nodes, and page
comparisons in them will still induce massive futile compar-
isons as in the global comparison trees.

Figure 5 shows the page classification based memory
deduplication named CMD. In CMD, there is a memory ac-
cess monitor to capture all memory accesses to pages, es-
pecially write memory accesses, since write accesses mod-
ify pages content and thus affect page sharing opportunities.
The memory access monitor maintains page access charac-
teristics for each page: once a write access to a page is cap-
tured, it updates the page access characteristics of the cor-
responding page (e.g. write count). The page classification
manager is responsible to group pages into different clas-
sifications based on page access characteristics: pages with
similar access characteristics are grouped into the same clas-
sification. The page classification are performed in each scan
round, which means that the access characteristics of pages
captured during the last scan round are used to guide page
classification in this scan round. And the memory access
monitor continues to capture access characteristics of pages
during this scan round, which will be used in the next scan
round.

69

Get next page
to be scanned

KSM
periodic scan

Get page modification

Search in its local
stable tree

Match
found?

Merge page
Yes

Last page for
this scan?

Yes
Re-initialize all
unstable trees

No

Update page
classifications

No Search in its local
unstable tree

Page modified?

No

Yes

Match
found?

Merge page and
migrate to local

stable tree

Insert page in its
local unstable tree

Yes

No

Get page classification

Figure 6. The Classification based KSM Tree algorithm
flowchart.

After pages are grouped into classifications, there is a
dedicated stable tree and a dedicated unstable tree in each
page classification. In each scan, pages searching and com-
parison are performed in a classification-by-classification
manner. In each page classification, a candidate page is
firstly compared with pages in the local stable tree of its
classification, if no match is found, the candidate page needs
to be further compared with pages in the local unstable tree.
When searching and comparison of all candidate pages in
a classification finished, it starts to scan pages in the next
classification. After finishing all pages scanning in all clas-
sifications, the the KSM thread will start the next scan round.

Figure 6 shows the classification based KSM tree algo-
rithm flowchart. In each KSM periodic scan, the KSM kernel
thread gets next page to be scanned, it firstly gets page classi-
fication from page classification manager and then searches
in its local stable tree. If a match is found, the candidate page
is merged with its identical page into its local stable tree.
Otherwise, it gets page modification information (by com-
paring new calculated checksum with last checksum of the
page), if the page is modified during last scan, it is consid-
ered to be volatile, and it will not be searched in the local un-
stable tree; if it is not modified, it is searched and compared
with pages in its local unstable tree. If a match is found, they
are merged into a shared page and migrated to its local sta-
ble tree; if no match is found, the candidate page is inserted
into its local unstable tree. After finishing all pages searching

FPGA

Ethernet
Interface

PCIe
Interface

DDR3
DIMM

DDR3 DIMM
DRAM DIMM Plugged on the back side

Figure 7. The HMTT board.

in each scan round, all unstable trees in all page classifica-
tions need to be destroyed and re-constructed in the next scan
round. Pages classifications also need to be updated based on
page access characteristics which is monitored in this scan
round.

3.2 Page Access Monitor

In this paper, we adopt a hybrid hardware/software mem-
ory trace monitoring system named HMTT [7], which is
based on hardware snooping technology. HMTT is DDR3
SDRAM compatible2, and it is able to monitor full-system
memory reference traces, including OS, VMMs, libraries,
applications, and it has also been enhanced to support fine-
grained objects [13], locks [18]. Figure 7 shows the HMTT
board. It acts as a DIMM adaptor between the motherboard
DIMM and the DRAM DIMM3, thus it can monitor all mem-
ory transaction signals (issued to DRAM devices plugged
on the HMTT board) on the DDR3 command bus. Then
the corresponding memory read/write access references can
be reconstructed based on interpreting DDR3 protocol with
the FPGA on the HMTT board, thus HMTT can capture
all memory traces at cache block granularity (since proces-
sors access DRAM memory when last level cache miss) on
a real system. We have also implemented a PCIe interface
on the HMTT to send memory traces to another machine
with high bandwidth, thus the HMTT can support monitor-
ing workloads with long-time running (e.g. hours). For more
implementation detail, please visit the HMTT home page at
http://asg.ict.ac.cn/hmtt/.

In this work, we don’t need to get detailed memory ac-
cess traces, instead, we just need write access characteristics
of pages, such as write access count, write distribution of
sub-pages. Thus we can directly maintain the access infor-
mation of pages with a SDRAM buffer on the HMTT board.
When a write access is monitored, it gets the physical page

2 In this version, it can work with DDR3-800MHz.
3 The HMTT is plugged directly on the motherboard DIMM, and the
DRAM DIMM is plugged on the HMTT board.

70

http://asg.ict.ac.cn/hmtt/

VM1

4243
Guest Memory

VMn

3413
Guest Memory...

Hypervisor

3 4 23 1 4 1 24 3
System Memory

Classification
Manager KSM

DRAM Memory

DRAM
Bus

DRAM Access
Monitor

Hardware

Software

3 2
Scanning

Page
Sharing8 ...

Figure 8. The overview of partitioned based KSM.

frame number (pfn) from request address, then it updates the
access characteristics of the page. Furthermore, we have also
implemented a Gigabit Ethernet interface on the HMTT as
shown in Figure 7, and the page access information is sent
periodically back to the experimental server with this Ether-
net interface (the time interval is smaller than the KSM scan
period). In software, we have implemented a shared memory
buffer between the receiving process and the kernel (as a ker-
nel module), thus the KSM thread can get the feedback page
access characteristics periodically, and this feedback infor-
mation is used to guide page classification. Since the HMTT
adopts hardware snooping technology, monitoring page ac-
cess characteristics introduces negligible overhead to the
hosting server. And furthermore, HMTT can capture mem-
ory accesses at fine granularity (e.g. cache block), thus we
can get more detailed and fine-grained page access charac-
teristics, such as write access distribution among sub-pages.
In contemporary processors, there is only an access bit and
a dirty bit for each page can be used to indicate whether it
is accessed or written recently. Although HMTT is an assis-
tant device that can not be deployed in every server node, the
main logic for memory access monitoring and counting can
be easily integrated into on-chip memory controller. Here we
only evaluate the benefit of such a mechanism while leaving
the architecture issue for future research.

3.3 Page Classification

Page classification algorithm is critical to reduce futile page
comparisons meanwhile to detect page sharing opportunities
efficiently. In this paper, we consider the following three
simple page classification algorithms:

• CMD Address: pages are statically classified by their
physical addresses (or page frame number). For example,
in our experimental system with 8GB physical memory,
pages are grouped into 8 classifications like that: pages
with address from 0B to 1GB are classified into clas-
sification 0, pages with address from 1GB to 2GB are

0

1

2

3

4

5

6

7

Dirty

Write

Write

Write

Classification

0
1
1
0
0
0
0
1

Sub Page

Figure 9. An example of CMD Subpage Distribution page
classification.

classified into classification 1, and so on. CMD Address
approach is probably to group pages into different par-
titions in balance, thus it can reduce page comparisons
within each classification. However, it might lose some
page sharing opportunities since it does not take page
access characteristics into account, pages with the same
content might be placed into different classifications, and
they have no chance to be compared and shared with each
other.

• CMD PageCount: the memory access monitor captures
count of write accesses for each page during each scan
round, and pages are simply partitioned by their write ac-
cess count. For example, when we set the write access
threshold as 8, then pages with the count of write ac-
cesses from 0 to 8 are placed into classification 0, and
pages with the count from 8 to 16 are placed into clas-
sification 1, and so on. CMD PageCount considers ac-
cess characteristics as a whole page, thus it can improve
classification accuracy rate and detect more page sharing
opportunities.

• CMD Subpage Distribution: each page is divided into
multiple sub-pages (e.g. 4 1KB sub-pages), and the mem-
ory access monitor maintains write access characteris-
tics for all sub-pages. Pages with the same sub-page ac-
cess distribution are grouped into the same classifica-
tion. Figure 9 shows an example of page classification
based on sub-page distribution. A page is divided into 8
sub-pages, each sub-page is with a dirty bit to indicate
whether it is written (or modified) during a scan round.
In this example, the page has only three sub-pages of
1,2,7 being written, thus the classification of this page is
(0,1,1,0,0,0,0,1).With fine grained sub-page access char-
acteristics, CMD Subpage Distribution has more oppor-
tunity to group pages with the same content into the same
classification, thus it can detect page sharing opportuni-
ties more efficient.

In addition to the above page classification approach, we
can make some optimizations to further reduce page com-

71

parison overhead. Pages that have not been modified dur-
ing last scan round can be treated as a special classification.
And they don’t need to be searched and compared with each
other, because the content of these pages have been com-
pared and failed to find any sharing opportunities before. If
the content of them are not modified, page comparisons in
this classification will definitely result in futile page com-
parisons. Thus for this page classification, we can just put
pages in a set without maintaining any comparison trees.

4. Experimental Methodology
We carried out our experiments with two 2.00GHz Intel
Xeon E5504 processors with EPT enabled. Each E5504 pro-
cessor has 4 physical cores and we have disabled the Hyper-
Thread. There are 3-level caches in each processor, the L1
instruction and data caches are 32KB each and the L2 cache
is 256KB, both the L1 and L2 are private in each core. The
L3 cache is 16-way 4MB and shared by all four cores in each
processor. The cache block size is 64-Byte for all caches in
the hierarchy. The total capacity of physical memory is 8GB
with one dual-ranked of DDR3-800MHz. The host server
runs CentOS-6.2 with Linux kernel 3.6.0. We implement
CMD based on KSM of Linux 3.6.10. We use libpcap [5]
to get ethernet packets with feedback page access charac-
teristics from Ethernet interface of the HMTT board. We
use QEMU [9] with KVM [2] (qemu-kvm-1.2.0) to sup-
port guest VMs. Each guest VM is configured with 1 virtual
CPU and 2GB main memory, we boot 4 VMs in parallel as
our default configuration. The guest VMs are running 64-bit
CentOS-6.3 with Linux kernel 2.6.32-279. We choose to run
the following workloads inside guest VMs:

• Kernel Build: we compile the Linux kernel 3.6.10 in
guest VMs. We begin this benchmark after the VMs are
fully booted and static sharing opportunities are detected.

• Apache Server: we run the ab [1] benchmark on Apache
httpd server. We test a local web site in guest VMs with
24 of concurrency requests.

• MySQL Database: we run the SysBench [4] with MySQL
database in guest VMs. We test database with 1-thread
and the oltp-table-size is configured as 1500000.

The CMD configuration parameters are set as follows4.
For CMD Address, we separate the 8GB machine physical
memory into 8 page classifications with 1GB memory in
each page classification. For CMD PageCount, we adopt the
write access count threshold for each page of 64, and since
we adopt 16 page classifications, all pages that with write
accesses exceeding 1024 are placed into the last page clas-
sification. And for CMD Subpage Distribution, we adopt 4
sub-pages access distribution (with 1KB in each sub-page)
to guide 16 page classifications. And to get the page classifi-

4 However they are not the best configurations, since we just choose them
based on some coarse parameters searching.

cation as sub-page dirty map, we adopt a threshold of 16 for
the number of write access to each sub-page, which means
that when the number of write access for a sub-page exceeds
16, the dirty bit of this sub-page is set to 1; otherwise it is set
to 0.

5. Experimental Results
Figure 10 shows the page sharing opportunities of different
workloads with 4VMs. For Kernel Build workload in Figure
10(a), we can see that the KSM can detect the most page
sharing opportunities (it is about 1.02E6 sharable pages).
But since it maintains pages into large global compari-
son trees, candidate pages needs to be compared with a
large number of uncorrelated page nodes, thus it takes a
little longer time to reach its maximum page-sharing state.
On the other hand, The CMD Addr detects the least page
sharing opportunities, it is only about 71% of the KSM
(about 7.25E5). That is because the CMD Addr groups
pages into different classifications simply based on phys-
ical page frame number, but without taking any page ac-
cess characteristics (which affect page content) into ac-
count. Pages with same content but with long-distance page
frame number will be separated into different page clas-
sifications. And since this classification approach is static,
these pages have no chance to be detected and shared with
each other. The CMD PageCount can detect about 87.1%
(about 8.89E5) page sharing opportunities as the KSM, this
is because it adopts coarse granularity page access charac-
teristics (the count of write accesses in each scan round)
to guide page classification. It can achieve higher accuracy,
however there is still some room for improvement. Finally
the CMD Subpage is able to detect nearly the same page
sharing opportunities (about 1.00E6), which is about 98% of
the KSM. This result proves that fine-granularity sub-page
write access distribution is a better guide for page classi-
fication. We can also see that the CMD Subpage can de-
tect page sharing opportunities more quickly than the KSM,
since each candidate page costs less time overhead to be
scanned and compared in its local comparison trees.

For Apache workload as shown in Figure 10(b), we can
see that the KSM can detect almost the same page sharing
opportunities (about 7.45E5) with the CMD PageCount and
the CMD Subpage approach. However the CMD Addr per-
forms quite poor, it can detects about only 38.9% page shar-
ing opportunities of the KSM (about 2.9E5). This further
indicates that static page classification has poor adaptivity,
and it needs to adopt dynamic page classification approach.
In this paper we prove that fine granularity dynamic page
access characteristics is a good hint for page classification,
since it has a close relationship with page content and thus
page sharing opportunities.

For MySQL workload as shown in Figure 10(c), we can
see that the CMD Addr and the CMD PageCount detects al-
most the same page sharing opportunities (about 3.54E5),

72

0 500 1000 1500 2000 2500
0

2

4

6

8

10

12
x 10

5

Time(Seconds)

#
 o

f
P

a
g
e
 S

h
a
ri
n
g
 O

p
p
o
rt

u
n
it
ie

s

KSM

CMD_Addr

CMD_PageCount

CMD_Subpage

(a) Kernel Build

0 200 400 600 800 1000 1200
0

1

2

3

4

5

6

7

8
x 10

5

Time(Seconds)

#
 o

f
P

a
g
e
 S

h
a
ri
n
g
 O

p
p
o
rt

u
n
it
ie

s

KSM

CMD_Addr

CMD_PageCount

CMD_Subpage

(b) Apache

0 1000 2000 3000 4000
0

1

2

3

4

5
x 10

5

Time(Seconds)

#
 o

f
P

a
g

e
 S

h
a

ri
n

g
 O

p
p

o
rt

u
n

it
ie

s

KSM

CMD_Addr

CMD_PageCount

CMD_Subpage

(c) MySQL

Figure 10. The page sharing opportunities with 4 VMs.

0 500 1000 1500 2000
0

1

2

3

4

5
x 10

8

Time(Seconds)

#
 o

f
P

a
g
e
 C

o
m

p
a
ri
s
o
n
s

KSM

CMD_Addr

CMD_PageCount

CMD_Subpage

(a) Kernel Build

0 500 1000 1500 2000
0

2

4

6

8

10
x 10

8

Time(Seconds)

#
 o

f
P

a
g
e
 C

o
m

p
a
ri
s
o
n
s

KSM

CMD_Addr

CMD_PageCount

CMD_Subpage

(b) Apache

0 1000 2000 3000 4000
0

2

4

6

8

10
x 10

8

Time(Seconds)
#
 o

f
P

a
g
e
 C

o
m

p
a
ri
s
o
n
s

KSM

CMD_Addr

CMD_PageCount

CMD_Subpage

(c) MySQL

Figure 11. The number of page comparisons of different workloads with 4VMs.

which is about 91.5% of the KSM (about 3.87E5). It is
worth noting that the CMD Subpage can detect even more
page sharing opportunities (about 4.69E5), which is about
1.21x of the KSM. The probable reason for it is that, in
MySQL workload, there exists abundant short-lived page
sharing opportunities. However the KSM is failed to detect
them since it costs longer comparison time for each candi-
date page which inducing massive futile comparisons. They
can be detected by the CMD Subpage approach, because for
each candidate page, it can be scanned more quickly just in
its local comparison tree, which makes it detect short-lived
page sharing opportunity more efficient.

Figure 11 shows the number of pages comparisons of dif-
ferent workloads with 4 VMs. For Kernel Build workload as
shown in Figure 11(a), we can see that the KSM with large
global comparison trees induces the most number of page
comparisons. While the CMD Addr has the least number
of page comparisons, it is about 56.8% of the KSM, since
CMD addr has the best balanced page classifications (with
address). The CMD PageCount and the CMD Subpage have
nearly the same number of page comparisons, it is about

73.3% of the KSM. Although the CMD Subpage induces
about 1.08x of page comparisons than the CMD Addr, it can
detect page sharing opportunities more efficient (as shown in
Figure 10). For Apache workload as shown in Figure 11(b),
the KSM also has the most number of page comparisons, and
the CMD Addr has the least number of page comparisons
which is about 55.5% of the KSM. The CMD PageCount
and the CMD Subpage have almost the same page compar-
isons, which is about 55.7% of the KSM. For MySQL work-
load as shown in Figure 11(c), The CMD Addr also has the
least number page comparisons, which is about 71.2% of the
KSM. While the CMD Subpage is about 76.6% of the KSM,
this is less than the CMD PageCount, which is about 86% of
the KSM. Thus we can conclude that the CMD Subpage is
the best tradeoff between detecting page sharing opportuni-
ties and reducing page comparisons (especially futile com-
parisons).

Figure 12 shows the percentage of futile rate reduc-
tion with 4 VMs, where the baseline is with the KSM ap-
proach. We can see that all these three approaches can re-
duce futile rate. On average it can reduce at about 4.77%,

73

0%

2%

4%

6%

8%

10%

12%

14%

16%

Kernel Build Apache MySQL Gmean

Pe
rc

en
ta

ge
 o

f F
ut

ili
ty

 R
at

e
R

ed
uc

tio
n

CMD_Addr CMD_PageCount CMD_Subpage

Figure 12. The percentage of futile rate reduction with 4
VMs, where the baseline is with the KSM approach.

0

5

10

15

20

25

30

35

40

Kernel Build Apache MySQL

C
PU

 U
til

iz
at

io
n

R
at

e
(%

)

KSM CMD_Addr CMD_PageCount CMD_Subpage

Figure 13. The average CPU Utilization Rate of the KSM
kernel thread for different approaches. The CPU Utilization
is got from top measurements taken every second.

6.35% and 12.15% for the CMD addr, CMD PageCount and
CMD Subpage respectively. The maximum reduction of the
CMD Subpage approach is about 13.62% for MySQL work-
load. This result prove the accuracy of the CMD Subpage
approach for page classification, which is based on fine gran-
ularity sub-page access distribution characteristics.

Figure 13 shows the average CPU Utilization Rate of the
KSM kernel thread for different approaches. We get the CPU
Utilization from top measurements taken every second. We
can see that all the other three CMD approaches (dividing
the global comparison tree into multiple comparison trees)
can reduce the CPU overhead compared with the KSM.
For Kernel Build workload, the CPU Utilization Rate is
about 24.98% for the KSM, which is reduce to 18.00%,
19.45% and 19.65% for the CMD Addr, CMD PageCount
and CMD Subpage respectively. This is main because that
the CMD approaches can reduce the number of futile page
comparisons and reduce the CPU run-time overhead. For the
Apache workload, the CPU Utilization Rate is about 38.12%
for the KSM, and it reduces to 27.48%, 29.44% and 29.12%
for the CMD Addr, CMD PageCount and CMD Subpage
respectively. For the MySQL workload, the CPU Utilization

Rate is about 26.40% for the KSM, and it reduces to 18.86%,
21.28% and 20.05% for the CMD Addr, CMD PageCount
and CMD Subpage respectively.

6. Related Work
Limited main memory size has become one of the major bot-
tlenecks in virtualization environment, and as an efficient ap-
proach to reduce server memory requirement,memory dedu-
plication thus has attracted a large body of work on it. Disco
virtual machine monitor (VMM) [10] was one of the first
systems that implemented page sharing technique, however
it needed to modify the guest OS to explicitly track page
changes to build knowledge of identical pages. The content-
based page sharing (CBPS) technique was firstly exempli-
fied by VMWare’s ESX server [29], in which CBPS required
no assistance from the guest OS and it was performed trans-
parently in the hypervisor layer. Thus CBPS had become
the most widely used page sharing technique both in indus-
try and academia. Kloster et al. [20] designed and imple-
mented content based page sharing in the Xen hypervisor.
They found that the unified disk caches were often the most
significant cause of redundancy in virtualized systems.

KSM (Kernel Samepage Merging) [6] is a scanning based
mechanism to detect page sharing opportunities. KSM is
implemented as a kernel thread, which periodically scans
pages of guest VMs to detect identical pages (based on page
content comparison). Chang et al. [12] conducted empirical
study on the effectiveness of KSM for various kind of work-
loads. They found KSM achieved effective memory shar-
ing which could reduce memory usage by around 50% for
I/O-bound applications. And they also found KSM would
cause higher run-time overhead for CPU-bound applications
caused by futile page comparisons. Rachamalla et al. [24]
studied the trade-off between KSM performance and CPU
overhead with different KSM configurations, then they de-
veloped an adaptive scheme to maximize sharing opportuni-
ties at minimal overhead. Barker et al. [8] proposed an em-
pirical study of memory sharing in virtual machines through
an exploration and analysis of memory traces captured from
real user machines and controlled virtual machines, they
found that sharing tended to be significantly more modest,
and the self-sharing contributed a significant majority of the
total sharing potential. Yang et al. [32] evaluated memory
overcommit features of memory sharing and swapping in
Xen, they also proposed an adaptive memory overcommit
policy to reach higher VM density without sacrificing per-
formance.

Gupta et al. proposed Difference Engine [17] to firstly
support sub-page sharing, in which full memory pages were
broken down into multiple sub-pages and memory sharing
was performed at the fine sub-page granularity. They fur-
ther proposed patching technique which would store simi-
lar pages by constructing patches, and worked together with
compression of non-shared pages to reduce the memory

74

footprint. With these optimizations, it could save memory
up to 90% between VMs running similar applications and
operating systems and up to 65% even across VMs running
disparate workloads. Wood et al. [30] proposed Memory
Buddies which adopted intelligent VM collocation within
a data center to aggressively exploit page sharing benefits.
KSM++ [21] adopted I/O-based hints in the host to make
the memory scanning process more efficient and to exploit
short-lived sharing opportunities. Miller et al. [22] proposed
a more effective memory deduplication scanner XLH, which
could exploit sharing opportunities earlier. XLH generated
page hints in the host’s virtual file system layer, then moved
them earlier into the merging stage. Thus XLH could find
short-lived sharing opportunities. However, the XLH could
only worked for virtual machines with intensive file, and it
still adopted the KSM with global trees for the whole system
memory. Chiang et al. [14] proposed a Generalized Memory
de-duplication engine that leveraged the free memory pool
information in guest VMs and treated the free memory pages
as duplicates of an all-zero page to improve the efficiency of
memory de-duplication.

Satori system [23] implemented sharing by watching for
identical regions of memory when read from disk, it could
find short-lived sharing opportunities effectively, however
it required modifications to the guest operating systems.
Sharma et al. [27] extended the page deduplication of KSM
for page caches, they proposed Singleton to address the
double-caching problem, which implemented an exclusive
cache for the host and guest page cache hierarchy. Kim et al.
[19] proposed a group-based memory deduplication scheme
that allowed the hypervisor to run with multiple deduplica-
tion threads, each of which was in charge of its dedicated
group. However their sharing group was aimed to provide
performance isolation and secure protection among differ-
ent groups. Deng et al. [15] also proposed a similar memory
sharing mechanism based on user groups to support isola-
tion and trustworthiness mechanism between different users
on the same host. Both of the above work did not take fu-
tile page comparison overhead into account, while our goal
of page classification in this paper is to reduce futile page
comparison overhead based on page access characteristics.
Sha et al. proposed SmartKSM [26] to divide memory foot-
prints into several sets in KSM based on page types and pro-
cess aspect. Sindelar et al. [28] proposed the design of graph
models to capture page sharing across VMs. They also de-
veloped sharing-aware algorithms that could collocate VMs
with similar page content on the same physical server. Xia
and Dinda [31] argued that in virtualized large scale parallel
systems, both intra- and inter- node memory content shar-
ing was common, they then proposed an effective sharing
memory detection system by using a distributed hash table.
In IBM Active Memory Deduplication [11], the hypervisor
created signatures for physical pages (in a deduplication ta-
ble) to reduce full page content comparison overhead.

7. Conclusion
In this paper, we firstly perform a detailed profiling of
the KSM run-time, and we find that there exists massive
futile page comparisons, because the KSM thread scans
on two large global comparison trees. We then propose a
lightweight page Classification-based Memory Deduplica-
tion approach named CMD. In CMD, pages are divided into
different classifications based on page access characteristics,
and the large global comparison trees are divided into mul-
tiple trees with dedicated ones in each page classification.
Page comparisons are performed just in the same classi-
fication, and pages from different classifications are never
searched and compared with each other, since they are prob-
ably futile comparisons. We adopt a lightweight hardware
assisted memory trace monitoring system to capture fine
granularity page access characteristics. We implement CMD
based on KSM in our real experimental system, and the ex-
perimental results show that the CMD can detect page shar-
ing opportunities efficiently (more than 98% of the KSM),
meanwhile reduce page comparisons and reduce the futile
rate by about 12.15% on average with fine granularity sub-
page access distribution characteristics.

Acknowledgements
The authors thank the anonymous reviewers for their con-
structive suggestions. This work is partially supported by
the National Natural Science Foundation of China (NSFC)
under Grant Nos. 60925009, 61221062, 61331008, the Na-
tional Basic Research Program of China (973 Program) un-
der Grant No. 2011CB302502, the Strategic Priority Re-
search Program of the Chinese Academy of Sciences under
Grant No. XDA06010401, and the Huawei Research Pro-
gram under Grant No. YBCB2011030. Yungang Bao is par-
tially supported by the CCF-Intel Young Faculty Research
Program (YFRP) Grant.

References
[1] ab - apache http server benchmarking tool. http://httpd.

apache.org/docs/2.2/programs/ab.html.

[2] Kvm-kernel based virtual machine. http://www.linux-

kvm.org/page/Main_Page.

[3] Linux 2 6 32 - linux kernel newbies. http://

kernelnewbies.org/Linux_2_6_32.

[4] Sysbench: a system performance benchmark. http://

sysbench.sourceforge.net/.

[5] Tcpdump and libpcap. http://www.tcpdump.org/.

[6] A. Arcangeli, I. Eidus, and C. Wright. Increasing memory
density by using ksm. In Proceedings of the Linux Symposium
(OLS’09), pages 19–28, 2009.

[7] Y. Bao, M. Chen, Y. Ruan, L. Liu, J. Fan, Q. Yuan, B. Song,
and J. Xu. Hmtt: a platform independent full-system mem-
ory trace monitoring system. In Proceedings of the 2008
ACM SIGMETRICS international conference on Measure-

75

http://httpd.apache.org/docs/2.2/programs/ab.html
http://httpd.apache.org/docs/2.2/programs/ab.html
http://www.linux-kvm.org/page/Main_Page
http://www.linux-kvm.org/page/Main_Page
http://kernelnewbies.org/Linux_2_6_32
http://kernelnewbies.org/Linux_2_6_32
http://sysbench.sourceforge.net/
http://sysbench.sourceforge.net/
http://www.tcpdump.org/

ment and modeling of computer systems, SIGMETRICS ’08,
pages 229–240, 2008.

[8] S. Barker, T. Wood, P. Shenoy, and R. Sitaraman. An empirical
study of memory sharing in virtual machines. In Proceedings
of the 2012 USENIX conference on Annual Technical Confer-
ence, USENIX ATC’12, pages 273–284, 2012.

[9] F. Bellard. Qemu, a fast and portable dynamic translator.
In Proceedings of the annual conference on USENIX Annual
Technical Conference, ATEC ’05, pages 41–46, 2005.

[10] E. Bugnion, S. Devine, K. Govil, and M. Rosenblum. Disco:
running commodity operating systems on scalable multipro-
cessors. ACM Trans. Comput. Syst., 15(4):412–447, Nov.
1997.

[11] R. Ceron, R. Folco, B. Leitao, and H. Tsubamoto.
Power systems memory deduplication. In IBM Redbooks,
2012. http://www.redbooks.ibm.com/abstracts/

redp4827.html.

[12] C.-R. Chang, J.-J. Wu, and P. Liu. An empirical study on
memory sharing of virtual machines for server consolida-
tion. In Parallel and Distributed Processing with Applications
(ISPA), 2011 IEEE 9th International Symposium on, pages
244–249, 2011.

[13] L. Chen, Z. Cui, Y. Bao, M. Chen, Y. Huang, and G. Tan.
A lightweight hybrid hardware/software approach for object-
relative memory profiling. In Performance Analysis of Sys-
tems and Software (ISPASS), 2012 IEEE International Sym-
posium on, pages 46–57, 2012.

[14] J.-H. Chiang, H.-L. Li, and T.-c. Chiueh. Introspection-based
memory de-duplication and migration. In Proceedings of
the 9th ACM SIGPLAN/SIGOPS international conference on
Virtual execution environments, VEE ’13, pages 51–62, 2013.

[15] Y. Deng, C. Hu, T. Wo, B. Li, and L. Cui. A memory dedupli-
cation approach based on group in virtualized environments.
In Proceedings of the 2013 IEEE Seventh International Sym-
posium on Service-Oriented System Engineering, SOSE ’13,
pages 367–372.

[16] R. P. Goldberg. Survey of virtual machine research. Com-
puter, 7(9):34–45, Sept. 1974.

[17] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference en-
gine: harnessing memory redundancy in virtual machines. In
8th USENIX Symposium on Operating Systems Design and
Implementation, OSDI’08, pages 309–322, 2008.

[18] Y. Huang, Z. Cui, L. Chen, W. Zhang, Y. Bao, and M. Chen.
Halock: hardware-assisted lock contention detection in mul-
tithreaded applications. In Proceedings of the 21st interna-
tional conference on Parallel architectures and compilation
techniques, PACT ’12, pages 253–262, 2012.

[19] S. Kim, H. Kim, and J. Lee. Group-based memory deduplica-
tion for virtualized clouds. In 6th Workshop on Virtualization
in High-Performance Cloud Computing, VHPC 2011, pages
387–397, 2011.

[20] J. F. Kloster, J. Kristensen, and A. Mejlholm. Determining the
use of interdomain shareable pages using kernel introspection.
In Tech. rep., Aalborg University, 2007. http://mejlholm.
org/uni/pdfs/dat7_introspection.pdf.

[21] K. Miller, F. Franz, T. Groeninger, M. Rittinghaus, M. Hil-
lenbrand, and F. Bellosa. Ksm++: Using i/o-based hints
to make memory-deduplication scanners more efficient. In
Proceedings of the ASPLOS Workshop on Runtime Envi-
ronments, Systems, Layering and Virtualized Environments
(RESoLVE’12), 2012. http://www.dcs.gla.ac.uk/

conferences/resolve12/papers/session3_paper2.

pdf.

[22] K. Miller, F. Franz, M. Rittinghaus, M. Hillenbrand, and
F. Bellosa. Xlh: More effective memory deduplication
scanners through cross-layer hints. In Proceedings of the
2013 USENIX conference on Annual Technical Conference,
USENIX ATC’13, pages 279–290, 2013.

[23] G. Miłós, D. G. Murray, S. Hand, and M. A. Fetterman. Satori:
enlightened page sharing. In Proceedings of the 2009 confer-
ence on USENIX Annual technical conference, USENIX’09,
pages 1–14, 2009.

[24] S. Rachamalla, D. Mishra, and P. Kulkarni. All page shar-
ing is equal, but some sharing is more equal than oth-
ers. 2013. http://www.cse.iitb.ac.in/internal/

techreports/reports/TR-CSE-2013-49.pdf.

[25] M. Rosenblum and T. Garfinkel. Virtual machine monitors:
current technology and future trends. Computer, 38(5):39–47,
2005.

[26] S. Sha, J. Li, N. Li, W. Ju, L. Cui, and B. Li. Smartksm:
A vmm-based memory deduplication scanner for vir-
tual machines. http://act.buaa.edu.cn/lijx/pubs/

sosp2013.smartksm.pdf.

[27] P. Sharma and P. Kulkarni. Singleton: system-wide page
deduplication in virtual environments. In Proceedings of the
21st international symposium on High-Performance Parallel
and Distributed Computing, HPDC ’12, pages 15–26, 2012.

[28] M. Sindelar, R. K. Sitaraman, and P. Shenoy. Sharing-aware
algorithms for virtual machine colocation. In Proceedings of
the 23rd ACM symposium on Parallelism in algorithms and
architectures, SPAA ’11, pages 367–378, 2011.

[29] C. A. Waldspurger. Memory resource management in vmware
esx server. SIGOPS Oper. Syst. Rev., 36(SI):181–194, Dec.
2002.

[30] T. Wood, G. Tarasuk-Levin, P. Shenoy, P. Desnoyers, E. Cec-
chet, and M. D. Corner. Memory buddies: exploiting page
sharing for smart colocation in virtualized data centers. In
Proceedings of the 2009 ACM SIGPLAN/SIGOPS interna-
tional conference on Virtual execution environments, VEE
’09, pages 31–40, 2009.

[31] L. Xia and P. A. Dinda. A case for tracking and exploiting
inter-node and intra-node memory content sharing in virtu-
alized large-scale parallel systems. In Proceedings of the 6th
international workshop on Virtualization Technologies in Dis-
tributed Computing Date, VTDC ’12, pages 11–18, 2012.

[32] X. Yang, C. Ye, and Q. Lin. Evaluation and enhancement
to memory sharing and swapping in xen 4.1. In XenSub-
mitt 2011. http://www-archive.xenproject.org/

files/xensummit_santaclara11/aug3/3_XiaoweiY_

Evaluation_and_Enhancement_to_Memory_Sharing_

and_Swapping_in_Xen%204.1.pdf.

76

http://www.redbooks.ibm.com/abstracts/redp4827.html
http://www.redbooks.ibm.com/abstracts/redp4827.html
http://mejlholm.org/uni/pdfs/dat7_introspection.pdf
http://mejlholm.org/uni/pdfs/dat7_introspection.pdf
http://www.dcs.gla.ac.uk/conferences/resolve12/papers/session3_paper2.pdf
http://www.dcs.gla.ac.uk/conferences/resolve12/papers/session3_paper2.pdf
http://www.dcs.gla.ac.uk/conferences/resolve12/papers/session3_paper2.pdf
http://www.cse.iitb.ac.in/internal/techreports/reports/TR-CSE-2013-49.pdf
http://www.cse.iitb.ac.in/internal/techreports/reports/TR-CSE-2013-49.pdf
http://act.buaa.edu.cn/lijx/pubs/sosp2013.smartksm.pdf
http://act.buaa.edu.cn/lijx/pubs/sosp2013.smartksm.pdf
http://www-archive.xenproject.org/files/xensummit_santaclara11/aug3/3_XiaoweiY_Evaluation_and_Enhancement_to_Memory_Sharing_and_Swapping_in_Xen%204.1.pdf
http://www-archive.xenproject.org/files/xensummit_santaclara11/aug3/3_XiaoweiY_Evaluation_and_Enhancement_to_Memory_Sharing_and_Swapping_in_Xen%204.1.pdf
http://www-archive.xenproject.org/files/xensummit_santaclara11/aug3/3_XiaoweiY_Evaluation_and_Enhancement_to_Memory_Sharing_and_Swapping_in_Xen%204.1.pdf
http://www-archive.xenproject.org/files/xensummit_santaclara11/aug3/3_XiaoweiY_Evaluation_and_Enhancement_to_Memory_Sharing_and_Swapping_in_Xen%204.1.pdf

	Introduction
	Background and Motivation
	Kernel Samepage Merging
	Profiling of KSM

	Classification-Based Memory Deduplication
	Overview
	Page Access Monitor
	Page Classification

	Experimental Methodology
	Experimental Results
	Related Work
	Conclusion

