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Abstract—Memory trace analysis is an important technology for architecture research, system software (i.e., OS, compiler)
optimization, and application performance improvements. Hardware-snooping is an effective and efficient approach to monitor and
collect memory traces. Compared with software-based approaches, memory traces collected by hardware-based approaches are
usually lack of semantic information, such as process/function/loop identifiers, virtual address and I/O access. In this paper we propose
a hybrid hardware/software mechanism which is able to collect memory reference trace as well as semantic information. Based on
this mechanism, we designed and implemented a prototype system called HMTT (Hybrid Memory Trace Tool) which adopts a DIMM-
snooping mechanism to snoop on memory bus and a software-controlled tracing mechanism to inject semantic information into normal
memory trace. To the best of our knowledge, the HMTT system is the first hardware tracing system capable of correlating memory trace
with high-level events. Comprehensive validations and evaluations show that the HMTT system has both hardware’s (e.g., no distortion
or pollution) and software’s advantages (e.g., flexibility and more information).

Index Terms—Hybrid Tracing Mechanism, Hardware Snooping, Memory Trace, High-Level Events, Semantic Gap.
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1 INTRODUCTION

A LTHOUGH the Memory Wall [46] problem has been
raised for over one decade, this trend remains in

multicore era where both memory latency and band-
width become critical. Memory trace analysis is an im-
portant technology for architecture research, system soft-
ware (i.e., OS, compiler) optimization, and application
performance improvements.

Regarding trace collection, Uhlig and Mudge [42] pro-
posed that an ideal memory trace collector should be:

• Complete: Trace should include all memory refer-
ences made by OS, libraries and applications.

• Detail: Trace should contain detail information to
distinguish one process address space from others.

• Undistorted: Trace should not include any addi-
tional memory references and it should have no time
dilation.

• Portable: Trace can still be tracked when moving to
other machines with different configurations.

• Other characteristics: An ideal trace collector
should be fast, inexpensive and easy to operate.

Memory trace can be collected in several ways which
are either hardware-based or software-based, such as
software simulators, binary instrumentation, hardware
counters, hardware monitors, and hardware emulators.
Table 1 summarizes these approaches. Although all ap-
proaches have their pros and cons, hardware-snooping
is relatively a more effective and efficient approach to

TABLE 1
Summary of Memory Tracing Mechanism

Simu- Instr- HW HW HW
late ument Cnt Snoop Emulate

Complete ∗ ∗ x
√ √

Detail
√

∗ x x
√

Undistorted
√

x
√ √

x
Portable

√
∗ ∗ x ∗

Fast x x
√ √ √

Inexpensive
√ √ √

∗ x
Note:

√
-Yes ∗-Maybe x-No

monitor and collect memory trace. Usually they are able
to collect undistorted and complete memory traces that
include VMM, OS, library and application. However,
in contrast with software-based approaches, there is
a semantic gap between memory traces collected by
hardware-based approaches and high-level events, such
as kernel-user context switch , process/function/loop
execution, virtual address reference and I/O access.

To bridge the semantic gap, we propose a hybrid
hardware/software mechanism which is able to collect
memory reference trace as well as high-level event in-
formation. The mechanism integrates a flexible software
tracing-control mechanism into conventional hardware-
snooping mechanisms. A specific physical address re-
gion is reserved as hardware components’ configuration
space which is prohibited for any programs and OS
modules except tracing-control software components.
When high-level events happen, the software compo-
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nents inject a specific memory traces with semantic
information by referencing the pre-defined configuration
space. Therefore, hardware components can monitor and
collect mixed traces which contain both normal memory
reference traces as well as high-level event identifiers. In
such a hybrid tracing mechanism, we are able to analyze
memory behaviors of specific events. For example, as
illustrated in section 6.3, we can distinguish I/O memory
reference from CPU memory reference. Moreover, the
hybrid mechanism supports various hardware-snooping
methods, such as MemorIES [35] which snoops on the
IBMs 6xx bus, PHA$E [21] and ACE [26] which snoop
on Intel’s Front Side Bus (FSB) and our approach which
snoops on memory bus.

Based on this mechanism, we have designed and
implemented a prototype system called HMTT (Hybrid
Memory Trace Tool) which adopts a DIMM-snooping
mechanism and a software-controlled trace mechanism
to inject semantic information into normal memory trace.
Several new techniques are proposed to overcome the
system design challenges: (1) To keep up with memory
speeds, the DDR state machine [11] is simplified to
match high speed, and large FIFOs are added between
the state machine and the trace transmitting logic to han-
dle occasional bursts. (2) To support flexible software-
controlled tracing, we develop a kernel module for an
uncachable memory region reservation. (3) To dump
full mass traces, we use a straightforward method to
compress memory trace and adopt a combination of
Gigabit Ethernet and RAID to transfer and save the
compressed trace. Based on these primitive functions
the HMTT system provided, advanced functions can
be designed, such as distinguishing one process ad-
dress space from others, distinguishing I/O memory
references from CPU’s. Comprehensive validations and
evaluations show that the HMTT system has both hard-
ware’s and software’s advantages. In summary, it has the
following advantages:

• Complete: It is able to track complete memory
reference trace of real systems, including OS, VMMs,
libraries, and applications.

• Detail: The memory trace includes timestamp, r/w,
and some semantic identifiers, e.g. process’ pid,
page table information, kernel entry/exit tags etc.
It is easy to differentiate processes’ address spaces.

• Undistorted: There are almost no additional refer-
ences in most cases because the number of high-
level events is much less than that of memory
reference trace.

• Portability: The hardware boards are plugged in
DIMM slots which are widely used. It is easy to
port the monitoring system to machines with dif-
ferent configurations (CPU, bus, memory etc.). The
software components can be run on various OS
platforms, such as Linux and Windows.

• Fast: There is no slowdown when collecting mem-
ory trace for analysis of L2/L3 cache, memory con-

troller, DRAM performance and power. The slow-
down factor is about 10X∼100X when cache is dis-
abled to collect whole trace.

• Inexpensive: We have built the HMTT system, from
schematic, PCB design and FPGA logic to kernel
modules, and analysis programs. The implementa-
tion of hardware boards is simple and low cost.

• Easy to operate: It is easy to operate the HMTT
system, because it provides several toolkits for trace
generation and analysis.

Using the HMTT system on X86/Linux platforms, we
have investigated the impact of OS on stream-based ac-
cess and found that OS virtual memory management can
decrease stream accesses in view of memory controller
(or L2 Cache), by up to 30.2% (301.apsi). We have found
that prefercher in memory controller cannot produce an
expected effect if not considering the multicore impact,
because the interference of memory accesses from multi-
ple cores (i.e., processes/threads) is serious. We have also
analyzed characterization of DMA memory references
and found that previously proposed Direct Cache Access
(DCA) scheme [27] have poor performance for disk-
intensive applications because disk I/O data is so large
that it can cause serious cache interference. In summary,
the evaluations and case studies show the feasibility and
effectiveness of the hybrid hardware/software tracing
mechanism and techniques.

The rest of this paper is organized as follows. Sec-
tion 2 introduces semantic gap between memory trace
and high-level events. Section 3 describes the proposed
hybrid hardware/software tracing mechanism. Section
4 presents design and implementation of the HMTT
system and section 5 discusses its verifications and eval-
uations. Section 6 presents several case studies of the
HMTT system to show its feasibility and effectiveness.
Section 7 presents an overview of related work. Finally,
Section 8 summarizes the work.

2 SEMANTIC GAP BETWEEN MEMORY TRACE
AND HIGH-LEVEL EVENTS

Memory trace (or memory address trace) is a sequence
of memory references which are generated by execut-
ing load-store instructions. Conceptually, memory trace
mainly indicates instruction-level architectural informa-
tion. Figure 1(a) shows a conventional memory trace
(in which timestamp, read/write and other information
have already been removed). Since trace-driven simu-
lation is an important approach to evaluate memory
systems and has been used for decades [42], this kind of
memory trace has played a significant role in advancing
memory system performance. As described in the intro-
duction, memory trace can be collected in various ways
among which hardware-snooping is relatively a more
effective and efficient approach. Usually they are able
to collect undistorted and complete memory traces that
include VMM, OS, library and application. Nevertheless,
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Fig. 1. The Semantic Gap between Memory Trace and
High-Level Events. (a) A conventional memory address
trace; (b) A typical high-level event flow; (c) The correla-
tion of memory trace and high-level events.

those memory traces mainly reflect low-level (machine-
level) information which is obscure for most people.

From the perspective of system level, a computer
system generates various events, such as context switch,
function call, syscall and I/O request. Figure 1(b) illus-
trates a typical event flow. To capture high-level event
flow, one may instrument source code or binary at points
of these events manually or automatically. In contrast
with memory trace, those events are at higher levels
and contain more semantic information which people
can understand more easily. However, only given high-
level events, it is usually insufficient to analyze system’s
performance and behaviors in depth.

Based on the above observations, we can conclude that
there is a semantic gap between conventional memory
traces and high-level events. If they can correlate to each
other, as shown in Figure 1(c), it should be significantly
helpful for both of low-level (memory trace) and high-
level (system or program events) analysis. For example,
for architecture and system, one can distinguish I/O
memory references from CPU memory references or ana-
lyze memory access pattern of a certain syscall, function
and loop and so on. For software engineering, memory
access information can be gathered for performance
analysis to determine which sections of a program to
optimize to increase its speed or decrease its memory
requirement.

However, prevalent trace tools can only collect either
memory trace or function call graph and OS event. Some
hardware monitors are only capable of collecting whole
memory requests by snooping on memory bus, such as
MemorIES [35], PHA$E [21] and ACE [26]. For high level
events, gprof can only provide call graph, and Linux

Trace Toolkit [3] and Lockmeter [19] focus on collecting
operating system events, however, with a substantial
amount of overhead. In addition, by instrumenting the
target program with additional instructions, some instru-
ment tools such as ATOM [41], Pin [6], Valgrind [10] are
capable of collect more information, e.g., memory trace,
function call graph. However, complicated instrument-
ing the program can cause changes of the performance
of program, inducing inaccurate results and bugs. Instru-
menting can also slow down the target program as more
specific information is collected. Moreover, it is hard
to instrument virtual machine monitor and operating
system.

In summary, there is a semantic gap between conven-
tional memory traces and high-level events but almost
none of the existing tools are capable of bridging the gap
effectively.

3 A HYBRID HARDWARE/SOFTWARE TRAC-
ING MECHANISM

To address the semantic gap, we propose a hybrid
hardware/software mechanism which is able to collect
memory reference trace as well as high-level event in-
formation simultaneously.

As shown in Figure 1(c), in order to efficiently collect
such correlated memory reference and event trace, the
hybrid tracing mechanism consists of three key parts
which we will discuss in the following subsections.

3.1 Hardware Snooping

Hardware snooping is an efficient approach to collect
memory reference via snooping on system bus or mem-
ory bus. It is able to collect complete memory traces
including VMM, OS, library and application without
time and space distortions. It should be noted that hard-
ware snooping approach mainly collects off-chip traffics.
Nevertheless, there are at least two ways to alleviate this
negative influence while one needs all memory refer-
ences generated by load/store unites within a chip: (1)
Mapping program’s virtual address regions to physical
memory with uncachable attribution. This can be done
by a slight modification for OS memory management
or a command to reconfigure processor’s Memory Type
Range Registers (MTRR). (2) Enabling/disabling cache
dynamically. To achieve such a goal, we can set cache
control registers many processors provided (e.g., X86’s
CR0) when entering a certain code section. These cache
control approaches may cause slowdown of 10X, still
being competitive while comparing to other software
tracing approaches.

3.2 Configuration Space

Usually it is difficult for software to control and synchro-
nize with hardware snooping devices, because the de-
vices are usually independent of target traced machine.
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Fig. 2. System’s physical address space is divided into
two parts: (1) a normal space which can be accessed
by OS and applications and (2) a specific space which
is reserved as hardware snooping device’s configuration
space. The addresses within the configuration space rep-
resent either inner commands or high-level events.

We address this problem by introducing a specific
physical address region reserved as hardware device’s
configuration space which is prohibited for any
programs and OS modules except tracing-control
software, as illustrated in Figure 2. The addresses within
the configuration space can be predefined as hardware
device’s inner commands, such as BEGIN TRACING,
STOP TRACING, INSERT ONE SPECIFIC TRACE.
They can also represent high-level events, such as
function call and syscall return.

3.3 Low Overhead Tracing-Control Software
Based on the configuration space, a low overhead
tracing-control software mechanism can be integrated
into a conventional hardware-snooping mechanism.

The tracing-control software has two functions. First,
it is able to control hardware snooping device. When the
tracing-control software generates a memory reference to
a specific address in the configuration space, the hard-
ware device captures the specific address which is pre-
defined as an inner command, such as BEGIN TRACING
or STOP TRACING. Then the hardware device performs
corresponding operations according to the inner com-
mand. Second, the software can make hardware snoop-
ing device synchronize with high-level events. When
those events occur, the tracing-control software generates
specific memory references to the configuration space in
which different addresses represent different high-level
events. In this way, the hardware device is able to collect
mixed traces as shown in the left side of Figure 1(c),
including both normal reference and specific reference.

Since hardware snooping can be controlled by only
one memory reference, this tracing-control software
mechanism is extremely low-overhead. The design and
implementation of the software are quite simple. Figure

Fig. 3. Two Samples of Tracing-Control Software. Pro-
gramer and compiler can instrument programs with the
codes manually or automatically. These codes contain
high-level events information and will issue specific mem-
ory references to the configuration space of hardware
snoop device.

3 illustrates a sample of tracing-control software. It in-
cludes two phases. In phase one, a pointer ptr is defined
and assigned with base address of the configuration
space. In phase two, programs can be instrumented with
the statement ”ch = ptr[EVENT OFFSET];” to insert
specific references into normal trace. Further, in order
to reduce substantial negative influence of source code
instrumentation, instructions can be directly inserted
into an assembler program, as the second sample shown
in Figure 3.

With this hybrid tracing mechanism, we are able to
analyze memory behaviors of a certain event. For ex-
ample, as illustrated in section 6, we can instrument
device drivers to distinguish I/O memory reference from
CPU memory reference. Further, the tracing mechanism
can be configured to only collect high-level events with
very low overhead, i.e., only collect the right side of
Figure 1(c). In addition, the hybrid mechanism supports
various hardware-snooping methods, such as MemorIES
[35] which snoops on the IBMs 6xx bus, PHA$E [21]
and ACE [26] which snoop on Intel’s Front Side Bus
(FSB) and our prototype system HMTT which snoops
on memory bus.

4 DESIGN AND IMPLEMENTATION OF HMTT
TRACING SYSTEM

Based on the hybrid hardware/software tracing mecha-
nism, we have designed and implemented a prototype
system called HMTT (Hybrid Memory Trace Tool). The
HMTT system adopts a DIMM-snooping mechanism
that uses hardware boards plugged in DIMM slots to
snoop on memory bus. We will introduce design and
implementation of the HMTT system in detail in the
following subsections.
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4.1 Top-Level Design

At the top-level, the HMTT tracing system mainly con-
sists of seven procedures for memory trace tracking and
replaying. Figure 4 shows the system framework and the
seven procedures.

From Figure 4, the first step for mixed trace collec-
tion is instrumenting target programs (i.e., application,
library, OS and VMM) with I-Codes by hand and by
scripts or compilers ( 1©). The I-Codes inserted at the
points where high-level events occur will generate spe-
cific memory references ( 3©) and some extra data such
as page table, I/O request ( 5©). Note that the mapping
information of correlated memory trace and high-level
events ( 2©) is also an output of the instrumenting oper-
ations.

For hardware parts, the HMTT system uses several
hardware DIMM-monitor boards plugged into DIMM
slots of a traced machine. The main memories of the
traced system are plugged into the DIMM slots inte-
grated on the hardware monitoring boards (see Fig-
ure 8). The boards monitor all memory commands via
DIMM slots ( 4©). An on-board FPGA converts the com-
mands into memory traces in this format <address, r/w,
timestamp>. Each hardware monitor board generates
trace separately and sends the trace to its corresponding
receiver via Gigabit Ethernet or PCI-Express interface
(see 4©). With synchronized timestamps, the separated
traces can be merged into a total mixed trace.

If necessary, the I-Codes can track and collect some
additional data to aid memory trace analysis. For exam-
ple, page table information can be used to reconstruct
physical-to-virtual mapping relationship to help analyze
process’ virtual address ( 6©). I/O request information
collected from device drivers can be used to distinguish
I/O memory references from CPU memory references.
Further, the on-board FPGA can perform online analysis
and send feedbacks to OS for online optimization via
interrupt.

We need to address several challenges to design this
system, such as how to make hardware snooping devices
keep up with memory speeds, how to design configura-
tion space for hardware devices, how to control tracing
by software and how to dump and replay massive trace.
We will elaborate on our solutions in the following
subsections.

4.2 Hardware Snooping Device

4.2.1 Keeping up with Memory Speeds

Fast and efficient control logic is required to keep up
with memory speeds because of high memory frequency
and multi-bank technologies. Since only memory ad-
dress is indispensable for tracking trace, we can only
monitor DDR commands at half memory data frequency.
For example, if use a DDR2-533MHz memory, the control
logic can operate at a frequency of only 266MHz, at
which most advanced FPGAs can work.

Fig. 4. The Framework of HMTT Tracing System. It
contains seven procedures: 1© instrument target program
manually or automatically to generate I-Codes and cor-
relation mapping information ( 2©). 3© generate memory
references; 4© hardware snooping devices collect and
dump mixed trace to storage. 5© I-Codes generate extra
data if necessary. 6© replay trace for offline analysis. 7©
hardware snooping devices can perform online analysis
for feedback optimization.

Fig. 5. Simplified State Machine. To keep up with memory
speeds, the standard DDR state machine [11] is simplified
to match high speed. (* - Note that ”addr” is used to filiter
specifical addresses of configuration space.)

To interpret the two-phase read/write operations, the
DDR SDRAM specification [11] defines seven commands
and a state machine which has more than twelve states.
Commercial memory controllers integrate even more
complex state machines which cost both time and money
to implement and validate. Nevertheless, we find that
only three commands, i.e. ACTIVE, READ and WRITE,
are necessary for extracting memory reference address.
Thus, we design a simplified state machine to interpret
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the two-phase operations for one memory bank. Figure
5 shows the simplified state machine. It has only four
states and performs state transitions based on the three
commands. The state machine is so simplified that the
implementation in a common FPGA is able to work at
a high frequency. Our experiments show that the state
machine implemented in a Xilinx Virtex II Pro FPGA is
able to work at a frequency of over 300MHz.

On the other hand, applications will generate occa-
sional bursts which may induce dropping trace. A large
FIFO between the state machine and trace transmitting
logic is provided to solve this problem. In the HMTT sys-
tem, we have verified that a 16K entries FIFO is sufficient
to match the state machine for a combination of DDR-
200MHz and a transmission bandwidth of 1Gbps as well
as a combination of DDR2-400MHz and a bandwidth
of 3Gpbs. For a higher memory frequency (e.g., DDR2-
800MHz), we can adopt some alternative transmission
technologies, such as PCI-E which can provide band-
widths of over 8Gbps.

4.2.2 Design of Hardware Device
The HMTT system consists of a Memory Trace Board
(MTB), which is a hardware monitor board wrapping
a normal memory and itself plugged in a DIMM slot
(see Figure 8). The MTB monitors memory command
signals which are sent to DDR SDRAM from memory
controller. It captures the DDR commands, and forwards
them to the simplified DDR state machine (described in
the last subsection). The output of state machine is a
tuple <address, r/w, duration>. These raw traces can
be sent out directly via GE/PCIE or buffered for online
analysis.

There is an FPGA on the MTB. Figure 6 shows the
physical block diagram of the FPGA. It contains eight
logic units. The DDR Command Buffer Unit (DCBU)
captures and buffers DDR commands. Then the buffered
commands are forwarded to the Config Unit and the
DDR State Machine Unit. The Config Unit (CU) trans-
lates a specific address into inner-commands, and then
controls MTB to perform corresponding operations, such
as switching work mode, inserting synchronization tags
to trace. The DDR State Machine Unit (DSMU) interprets
two-phase interleaved multi-bank DDR commands to a
format of <address, r/w, duration>. Then the trace will
be delivered to the TX FIFO Unit (TFU) and be sent
out via GE. The FPGA is reconfigurable to support two
optional units: the Statistic Unit (SU) and Reuse Distance
& Hot Pages Unit (RDHPU).

The Statistic Unit is able to do statistic of various
memory events in different intervals (1us ∼ 1s), such
as memory bandwidth, bank behavior, and address bits
change. The RDHPU is able to calculate pages reuse
distance and collect hot pages. The RDHPUs kernel is
a 128-length LRU stack which is implemented in an
enhanced systolic array proposed by J.P. Grossman [25].
The output of these statistic unit can be sent out or
used for online feedback optimization. To keep up with

Fig. 6. The FPGA Physical Block Diagram. It contains
eight logic units. Note that the ”Statistic Unit” and ”Reuse
Distance & Hot Pages Unit” are optional for online analy-
sis.

memory speeds, the DDR State Machine Unit adopts the
simplified state machine described in the last subsection.
The TX FIFO Unit contains a 16K entries FIFO between
the state machine and the trace transmitting logic.

4.3 Design of Configuration Space
As described before, we adopt a configuration space
mechanism to address the challenge of making software
control hardware snooping devices. Figure 2 has illus-
trated the principle scheme of this mechanism where a
specific physical address region is reserved for config-
uration space. Further, the right part of Figure 7 illus-
trates the details of HMTT’s configuration space. The ad-
dresses of the space are defined as either HMTT’s inner
commands (e.g., BEGIN TRACING, STOP TRACING,
INSERT ONE SPECIFIC TRACE) or user-defined high-
level events (from address 0x1000). Note that the differ-
ence of two contiguous defined addresses relies on block
size of processor’s last level cache whose size is 64 (0x40)
bytes in our cases.

4.4 Tracing-Control Software
Figure 3 has already illustrated two samples of tracing-
control software. In this subsection, we will present
details of software implementations. As shown in Figure
7, the tracing-control software can run on both Linux
and Windows platforms. At phase 1©, the top several
megabytes (e.g., 8MB) physical memory is reserved as
the HMTT’s configuration space when Linux or Win-
dows boot. This can be done by modifying the param-
eter in grub (i.e., mem) or boot.ini (i.e., maxmem). Thus,
access to the configuration space is prohibited for any
programs and OS modules. At phase 2©, a kernel module
is introduced to map the reserved configuration space
as a user-defined device, called /dev/hmtt for Linux
or \\Device\\HMTT for Windows. Then user programs
can map /dev/hmtt (Linux) or \\Device\\HMTT (Win-
dows) into their virtual address spaces so that they
can access the HMTT’s configuration space directly. At
phase 3©, the HMTT’s Config Unit will identify the prede-
fined addresses and translate them into inner-commands
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Fig. 7. The Software Tracing-Control Mechanism. 1© The
physical memory is reserved as HMTT’s configuration
space. 2© User programs map the space into their virtual
address space. 3© There are predefined inner commands
in the configuration space.

to control the HMTT system. For example, the inner-
command END TRACING is defined as one memory
read reference on the offset of 0x40 in the configuration
space.

4.5 Trace Dumping and Replay
Usually, memory reference traces are generated at very
high speed. Our experiments show that most applica-
tions generate memory trace at bandwidths of more than
30MB/s even when utilize the DDR-200MHz memory.
Moreover, the high frequency of the DDR2/DDR3 mem-
ory and the prevalent multi-channel memory technology
further increase trace data generation bandwidth, up to
100X MB/s. Our efforts consist of two aspects.

First, we apply several straightforward compress
methods to reduce the memory trace generation and
transmission bandwidth. While memory works in burst
mode [11], we only need to track the first memory
address of a contiguous addresses pattern. For exam-
ple, when the burst length is equal to four, the latter
three addresses of a 4-length addresses pattern can be
ignored. Trace format is usually defined as <address,
r/w, timestamp> which needs at least 6∼8 bytes to
store and transmit. We find that the high bits of the
difference of timestamps in two adjacent traces are al-
ways 0s at most time. We use duration (= timestampn -
timestampn−1) to replace timestamp in the trace format.
This differencing method reduces the duration bits to
ensure one trace to be stored and transmitted in 4
bytes. However, the duration may overflow. We define a
specific format <special identifier, duration high bits>
to handle the overflows. Then, the timestamps can be
calculated in the trace replay phase. The straightforward
compress methods substantially reduce trace generation
and transmission bandwidth.

Second, the experimental results show that trace gen-
eration bandwidth is still high with the above compres-
sions. In the procedure 4© shown in figure 4, we adopt

multiple Gigabit Ethernets (GE) and RAIDs to send and
receive memory traces respectively (in fact, multiple GEs
can be replaced by one PCIE interface). In this way, all
traces are received and stored in RAID storages (the
details about trace generation and transmission band-
width will be discussed in the next section). Each GE
sends trace respectively, so the separated traces need to
be merged when replay. We assign each trace its own
timestamp which is synchronized within FPGA. Then
the trace merge operation is simplified to be a merge
sort problem.

In summary, the HMTT system adopts a combination
of the straightforward compressions, the GE-RAID ap-
proach and the trace merge procedure to dump massive
traces. In our experiments, we use a machine with
several Intel E1000 GE NICs to receive memory trace.
These techniques are scalable for higher trace generation
bandwidth.

4.6 Other Design Issues

There are several other design issues of the HMTT
system, such as collecting extra kernel information, con-
trolling cache dynamically.

Assistant Kernel Module: We introduce an assistant
kernel module to help collect kernel information, such
as page table, I/O requests. On Linux platform, the
assistant kernel module provides an hmtt printk routine
which can be called at any place from the kernel. Unlike
Linux kernels printk, the hmtt printk routine supports
large buffers and user-defined data format, like some
popular kernel log tools, such as LTTng [3]. The assistant
kernel module requires a kernel buffer to store kernel
collected information. Usually, this buffer is quite small.
For example, our experiments show that the size of a
buffer for all page tables is only about 0.5% of total
system memory.

Dynamical Cache-Enable Control: Hardware snoop-
ing approach collects off-chip traffics. We adopt a dy-
namically enabling/disabling cache approach to collect
all memory references. On X86 platforms, we introduce a
kernel module to set the Cache-Disable bit (bit30) of CR0
register to control cache when entering or exiting a cer-
tain code section. This cache control approach may cause
slowdown of 10X, still being competitive while compar-
ing to other software tracing approaches. In addition, the
X86 processor’s Memory Type Range Registers (MTRR)
can also be used for managing cachable attribution.

4.7 Put It All Together

So far, we have described a number of design issues
of the HMTT system, including hardware snooping de-
vice, configuration space, tracing-control software, trace
dumping and replay, assistant kernel module, dynami-
cally cache enabling and so on.

Figure 8 illustrates the real HMTT system which
is working on an AMD server machine. Currently,
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Fig. 8. The HMTT Tracing System. It is plugged into a
DIMM slot of the traced machine. The main memory of the
traced system is plugged into the DIMM slot integrated on
the HMTT system.

the HMTT system supports DDR-200MHz and DDR2-
400MHz and will support DDR2/DDR3-800MHz in the
near future. We have tested the tracing-control software
on various Linux kernels (2.6.14 ∼ 2.6.27). The software
can be ported to Windows platform easily. We have also
developed an assistant kernel module to collect page
table and DMA requests currently (we will describe
them in detail later). Besides, we have developed a
toolkit for trace replay and analysis.

5 EVALUATIONS OF THE HMTT SYSTEM

5.1 Verification and Evaluation
We have done a lot of verification and evaluation work.
The HMTT system is verified in four aspects, including
physical address, comparison with performance counter,
software components and synchronization of hardware
device and software. We have also evaluated the over-
heads of the HMTT system, such as trace bandwidth,
trace size, additional memory references, execution time
of I-Codes and kernel buffer for collecting extra kernel
data. The work show that the HMTT system is an
effective and efficient memory tracing system. (More
details are shown in APPENDIX A.)

5.2 Discussion
5.2.1 Limitation
It is important to note that the monitoring mechanism
can not distinguish the prefetch commands.

Regarding the impact of prefetch on memory trace, it
has both up side and down side. The up side is that

we can get real memory accesses trace to main memory,
which can benefit research on main memory side (such
as memory thermal model research [31]). The down
side is that it is hard to differentiate the prefetch mem-
ory access and on-demand memory accesses. Regarding
prefetch, caches could generate speculative operations.
However, they do not influence memory behaviors sig-
nificantly. Most memory controllers do not have complex
prefetch unit, although several related efforts have been
made, such as Impluse project [48], proposed region
prefetcher [44], and the stream prefetcher in memory
controller [28]. Thus, it is not a critical weakness of our
monitoring system. It is to be noted that all hardware
monitors also have the same limitation, prefetching from
various levels of the memory hierarchy.

5.2.2 Combination With Other Tools

As a new tool, HMTT system is a complementary tool to
binary instrumentation and full system simulation with
software rather than a thorough substitution. Since it is
running in real-time and in real systems, the combination
with different techniques would be more efficient for
architecture and application research.

Combination with simulators: to combine with sim-
ulators, the HMTT system can be used to collect trace
from real systems, including multicore platform. Then,
the trace is analyzed for finding new insights. Some new
optimization mechanisms based on new insights can be
evaluated by simulators.

Combination with binary instrumentation: In fact,
the tracing-control software is an instance of the com-
bination of hardware snooping and source code instru-
mentation. Further, we can adopt binary instrumentation
to insert tracing-control codes into binary files to iden-
tify functions/loops/blocks. In addition, with compiler-
provided symbol table, the virtual-address trace can be
used for semantic analysis.

6 CASE STUDIES

In this section, we will present several case studies on
two different platforms, an Intel Celeron machine and
an AMD Opteron machine respectively. The case studies
are: (1) OS impact on stream-based access; (2) multicore
impact on memory controller; (3) characterization of
DMA memory reference.

We have performed experiments on two different
machines listed in Table 2. It should be noted that
the HMTT system can be ported to various platforms,
including multicore platforms, because it mainly de-
pends on DIMM. We have studied memory behaviors
of three classes of benchmarks including (See Table 2):
computing intensive applications (SEPC CPU2006 and
SPEC CPU2000 with reference input sets), OS intensive
applications (OpenOffice and Realplayer), Java Virtual
Machine applications (SPECjbb 2005), and I/O-intensive
applications (File-Copy, SPECWeb 2005 and TPC-H).
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TABLE 2
Experimental Machines and Applications

Machine 1 Machine 2
CPU Intel Celeron 2.0GHz AMD Opteron

Dual Core 1.8GHz
L1 I-Cache 12K,6µop/Line 64KB,64B/Line
L1 D-Cache 8KB,4-Way,64B/Line 64KB,64B/Line

L2 Cache 128KB,2-Way,64B/Line 1MB,16-Way,64B/Line
Memory Intel 845PE Integerated

Controller
DRAM 512MB,DDR-200 4GB,DDR-200

Dual-Channel
Hardware None Yes
Counter

Hardware None Sequential Prefetcher
Prefetcher in Memory Controller

OS Fedora Core 4(2.6.14) Fedora 7(2.6.18)
1.SPEC CPU 2000 1. SPEC CPU 2006

Application 2.SPECjbb 2005 2. File-Copy: 400MB
3.OpenOffice: 25MB slide 3. SPECWeb 2005
4.RealPlayer: 10m video 4. Oracle + TPC-H

6.1 OS Impact on Stream-Based Access

Stream-based memory accesses, also called fixed-stride
access, can be used by many optimization approaches,
such as prefetching and vector loads. Here, we define a
metric of Stream Coverage Rate (SCR) as the proportion
of stream-based memory accesses in applications total
accesses:

SCR =
Stream Accesses

Total Accesses
∗ 100% (1)

Previous works have proposed several stream prefetch-
ers in cache or memory controller [13][28][30][37][40].
However, these proposed techniques are all based on
physical address and little research has focused on im-
pact of virtual address on stream-based access. Although
Dreslinski et al [22] have pointed the negative impact of
not accounting for virtual page boundaries in simulation,
they still adapted a non-full system simulator to perform
experiments because of the long period of time to simu-
late a system in steady state. Existing research methods
have prohibited further investigations into the impact of
OS’s virtual memory management on prefetching. In this
case, we have used the HMTT system to reveal this issue
in a real system (Intel Celeron Platform).

Before presenting the case study, we introduce how to
use the HMTT system to collect virtual memory trace. As
Figure 9 shown, we insert some I-Codes into Linux ker-
nel’s virtual memory management module to track each
page table entry update. The data is stored in the form
of <pid, phy page, virt page, page table entry addr>
which indicates that a mapping physical page phy page
to virtual page virt page is created for process pid, and
this mapping information is stored in the location of
page table entry addr. Thus, given a physical address,
the corresponding process and virtual address can be
retrieved from the page table information. The I-Codes
are also responsible for synchronization with physical
memory trace by referencing the HMTT’s configuration
space. In this way, we are able to analyze specified

Fig. 9. A sample of collecting virtual memory trace with
the HMTT system. I-Codes are instrumented into OS’s
virtual memory management module to collect page table
information. Then the combination of physical memory
trace and page table information can form virtual memory
trace.

Fig. 10. The portion of SCR reduced due to OS’s virtual
memory management which may map contiguous virtual
pages to non-contiguous physical pages.

process’s virtual memory trace.
In order to evaluate application’s SCR, we adopt an

algorithm proposed by Mohan et al [34] to detect stream
among L2 cache misses in cache line level. Figure 11
shows the physical and virtual SCRs detected with dif-
ferent scan-window sizes. As shown in Figure 11, most
applications’ SCRs are more than 40% under a 32-entry
window (The following studies are based on the 32-
entry window). Figure 10 illustrates the portion of SCR
reduced due to OS’s virtual memory management. We
can see that the OS’s influence varies relying on different
applications. Among all 25 applications, the reduction
of 15 applications’ SCRs is not significantly, less than
5%, but there are also 8 applications approaching or
exceeding 10%. As a specifical case, the SCR of ”apsi”
is reduced by 30.2%. We selected several applications to
investigate the reason of the phenomena. Figure 12(a)
shows the CDF of these applications’ stream strides
where most applications’ strides are less than 10, within
one page. The short strides indicate that most streams
have good spatial locality and also indicate that OS page
mapping may slightly influence the SCRs when streams
are within one physical page. Nevertheless, most strides
of the 301.apsi application are quite large. For example,
they is mainly over 64KB (64B*1000), covering several
4KB-size pages. Figure 12(b) illustrates the apsi’s virtual-
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Fig. 11. ”Stream Coverage Rate (SCR)” of various applications under different detection configurations. For example,
the label of ”Virt-8” means detecting SCR among virtual addresses with an 8-entry detection window, while ”Phy-8”
means detecting SCR among physical addresses.

(a) (b) (c)

Fig. 12. (a) CDF of Stream Stride. (b) The apsi’s virtual-to-physical page mapping information. (c) Distribution of the
virtual-to-physical remapping times during application’s execution lifetime.

to-physical page mapping information where virtual
pages are absolutely contiguous but their corresponding
physical pages are non-contiguous.

We can find an interesting observation from Figure
12(c) that most physical pages are mapped to virtual
pages only once during application’s entire execution
lifetime. This observation implies that either applica-
tion’s working set has long lifetime or memory capacity
is enough so that reusing physical pages is not required.
Thus, to remove the negative impact of virtual memory
management on stream-based access, OS can pre-map
a region where both virtual and physical addresses are
linear. For example, OS can allocate memory within
this linear region when applications call malloc library
function. If the region has no space, OS could determine
to either reclaim free space for the region or allocate in
common method.

6.2 Multicore Impact on Memory Controller
Programs run on multicore system can concurrently gen-
erate memory access requests. Although L1 cache, TLB
etc are usually designed to be core’s private resources,
some resources remain sharing by multiple cores. For
example, memory controller is a shared resource existing
in almost all prevalent multicore processors. Thus, mem-
ory controller can receive concurrent memory access
requests from different cores (process/thread). In this
case, we will investigate the impact of multicore on
memory controller on the AMD Opteron dual cores

system by the HMTT system. The traces are collected in
the same method as shown in Figure 9, which is depicted
in last section .

Figure 13(a) illustrates a slice of memory trace of two
concurrent processes, i.e. wupwise and fma3d, where the
phenomenon of interleaved memory access is intuitively
obvious. We detect ”Stream Coverage Rate (SCR)” of
the two-process mixed trace and find that the SCR
can is about 46.9% and 79.3% for <lucas+ammp> and
<wupwise+fma3d> respectively. Because the memory
traces collected by the HMTT system contain process
information, we are able to detect SCR of individual
process’s memory accesses. In this way, we evaluate the
potential of process-aware detection policy at memory
controller level. Figure 13(b) shows that the SCRs of lucas
and ammp increase to 56.9% and 62.6% respectively, as
are the SCRs of wupwise and fma3d.

Further, we adopt micro-benchmarks to investigate the
effect of AMD’s sequential prefetcher in memory con-
troller. We use performance counters to collect statistic
of two events, i.e. DRAM ACCESSES which indicates
the number of memory requests issued by memory
controller and DATA PREFETCHES which indicates the
number of prefetching requests issued by sequential
prefetcher. Here, we define a metric of Prefetch Rate as
the proportion of prefetching requests in total memory
accesses:

Prefetch Rate =
DATA PREFETCHES

DRAM ACCESSES
∗ 100% (2)
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(a) (b) (c) (d)

Fig. 13. (a) A slice of memory trace presents the phenomenon of interleaved memory accesses between two
processes. (b) The memory controller can detect better regularity metric (SCR) if it is aware of processes. (c) Perform
micro-benchmarks to investigate the effect of AMD’s sequential prefetcher in memory controller. (d) CDF of continuous
memory accesses of one process before interfered by another process.

Fig. 14. Memory Access Information Flow. In traditional
memory hierarchy, access information is continually re-
duced from high memory hierarchy level to low level.

It should be noted that the sequential prefetcher can
issue prefetching requests only after it detects three
contiguous accesses. Thus, the Prefetch Rate also im-
plies the ”Stream Coverage Rate (SCR)” detected by the
prefetcher.

We run a micro-benchmark to sequentially read a
linear 256MB physical memory region. Since our ex-
perimental AMD Opteron processor has two cores, we
disable one core to emulate one-core environment by
Linux’s tool. Intuitively, an ideal sequential prefetcher
should achieve a Prefetch Rate of near 100%. As shown
in Figure 13(c), this ideal case exists in one-core en-
vironment no matter how many processes run con-
currently. However, in the two-core environment, the
Prefetch Rate of one-precess case is still over 90%
but it sharply decrease to 46% when running two or
more processes concurrently. We further investigate the
phenomenon by analyzing memory trace. Figure 13(d)
shows the CDF of one process’ continuous memory
accesses before interfered by another process. We can
find that when two processes run concurrently, in most
cases (over 95%) memory controller can only handle less
than 40 memory access requests of one process and then
will be interrupted to handle another process’ requests.
For the case of running one process, memory controller
can handle over 1000 memory access requests of the
process and then be interrupted to handle other requests.
These experiments reveal that the interference of mem-

ory accesses from multiple cores (i.e., processes/threads)
is serious.

In a word, although prefetcher has been integrated
into memory controller for optimizing memory system
performance, it cannot produce an expected effect if not
consider the multicore’s impact. Usually, optimization
requires request information. Figure 14 shows a tradi-
tional memory access information flow in a common
memory hierarchy. We can find that memory access in-
formation is continually reduced when a request passes
from high memory hierarchy level to low level. For
example, after TLB’s address translation, L2 cache and
memory controller can only obtain physical address
information. So if more information (e.g., core-id, virtual
address) could be passed through the memory hierarchy,
those optimization techniques for low-level hierarchies
(L2/L3 cache and memory controller) should gain better
effect.

6.3 Characterization of DMA Memory Reference
I/O accesses are essential on modern computer systems,
whenever we load binary files from disks to memory or
download files from network. DMA technique is used
to release processor from I/O process, which provides
special channels for CPU and I/O devices to exchange
I/O data. However, as the throughput of the I/O devices
grows rapidly, memory data moving operations have
become critical for DMA scheme, which becomes a
performance bottleneck for I/O operations. In this case,
we will investigate the characterization of DMA memory
reference.

First, we introduce how to collect DMA memory refer-
ence trace. To distinguish a memory reference issued by
DMA engine or processor, we have inserted I-Codes into
the device drivers of hard disk controller and network
interface card (NIC) on Linux platform. Figure 15 illus-
trates the memory trace collection framework. When the
modified drivers allocate and release DMA buffers, the
I-Codes record start address, size and owner information
of a DMA buffer. Meanwhile, they send synchronization
tags to the HMTT system’s configuration space. When
the HMTT system receives synchronization tags, it in-
jects tags (DMA BEGIN TAG or DMA END TAG) into
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Fig. 15. A sample of distinguishing CPU and DMA
memory trace with the HMTT system. I-Codes are instru-
mented into I/O device drivers to collect DMA request in-
formation, e.g., DMA buffer region, the time when allocate
and release DMA buffer. Holding the information, we can
identify those memory accesses falling into both space
region and time interval as DMA memory accesses.

physical memory trace to indicate that those memory
references between the two tags and within the DMA
buffers address region are DMA memory references ini-
tiated by DMA engine. The status information of DMA
requests, such as start address, size and owner, is stored
in a reserved kernel buffer and is dumped into a file
after memory trace collection is completed. Thus, there is
no interference of additional I/O access. In this way, we
can differentiate DMA memory reference from processor
memory reference by merging physical memory trace
and status information of DMA requests. In this case,
we run all the benchmarks on the AMD server machine
and use the HMTT system to collect memory reference
traces of three real applications (file-copy, TPC-H, and
SPECweb2005).

Table 3 shows the percentages of DMA memory ref-
erences in various benchmarks. In Table 3 we can see
that the file-copy benchmark has nearly the same per-
centage of DMA read references (15.4%) and DMA write
references (15.6%), and the sum of two kinds of DMA
memory references is about 31%. For TPC-H benchmark,
the percentage of all DMA memory references is about
20%. The percentage of DMA write references (19.9%)
is about 200 times of that of DMA read references
(0.1%) because the dominant I/O operations in TPC-H is
transferring data from disk to memory (i.e., DMA write
request). For SPECweb2005, the percentage of DMA
memory references is only 1.0%. Because the size of
network I/O requests (including a number of DMA
memory references) is quite small, processor is busy with
handling interrupts.

Table 4 and Figure 16 depict the average size of
DMA requests and the cumulative distributions of the
size of DMA requests for three benchmarks respectively
(one DMA request includes a number of DMA mem-
ory references with 64 bytes). For file-copy and TPC-H

TABLE 3
Percentage of Memory Reference Type

File Copy TPC-H SPECweb2005
CPU Read 45% 60% 75%
CPU Write 24% 20% 24%
DMA Read 15.4% 0.1% 0.76%
DMA Write 15.6% 19.9% 0.23%

TABLE 4
Average Size of Various Types of DMA Requests

Request Type % Avg Size
File Disk DMA Read 49.9 393KB

Copy Disk DMA Write 50.1 110KB
TPC-H Disk DMA Read 0.5 19KB

Disk DMA Write 99.5 121KB
Disk DMA Read 24.4 10KB

SPECweb Disk DMA Write 1.7 7KB
2005 NIC DMA Read 52 0.3KB

NIC DMA Write 21.9 0.16KB

Fig. 16. Cumulative Distribution of DMA Request Size

benchmarks, all DMA write requests are less than 256KB
and the percentage of those requests with the size of
128KB is about 76%. The average sizes of DMA write
requests are about 110KB and 121KB for file-copy and
TPC-H respectively. For SPECweb2005, the size of all
DMA requests issued by NIC are smaller than 1.5KB
because the maximum transmission unit (MTU) of Giga-
bit Ethernet frame is only 1518 bytes. The size of DMA
requests issued by IDE controller for SPECweb2005 is
also very small, an average of about 10KB.

It should be noted that some studies have focused
on reducing the overhead of additional memory copy
operations for I/O data transfer, such as Direct Cache
Access (DCA) [27]. However, their study focuses on net-
work traffics and shows that the DCA scheme has poor
performance for applications that have intensive disk
I/O traffics (e.g. TPC-C). Our evaluations have shown
this is because sizes of disk DMA requests (100+KB) are
larger than those of network (<1KB). Therefore, disk I/O
data can cause serious cache interference. We will further
analyze and optimize I/O memory access in our future
work.
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6.4 Summary of Case Studies
In this section, we have present three case studies to
demonstrate the widespread and effective use of the
HMTT system. It should be noted that although we
insert these I-Codes into OS modules and device drivers
manually in the three case studies, we are enhancing
the HMTT system by integrating binary instrumentation
into it. In this way, the HMTT system is able to collect
information from binary files. Overall, the case studies
have shown the HMTT System, which adopts the hybrid
hardware/software tracing mechanism, is a feasible and
convincing memory trace monitoring system.

7 RELATED WORK

There are several areas of effort related to memory trace
monitoring: software simulators, binary instrumentation,
hardware counters, hardware monitors and hardware
emulators.

Software simulators: Most memory performance and
power researches are based on simulators. They utilize
cycle-accurate simulators to generate memory trace and
then feed trace to tracedriven memory simulators (e.g.
DRAMSim [43], MEMsim [38]). SimpleScalar [8] is a
popular user-level simulator, but it can not run operating
system for analysis of full system behaviors. Several
full system simulators (such as SimOS [39], Simics [33],
M5 [4], BOCHS [1] and QEMU [17]), which can boot
commercial operating systems, are commonly used in re-
search when deal with OS-intensive applications. How-
ever, software simulators usually have speed and scala-
bility limitations. As the computer architectures become
more and more sophisticated, more detail simulation
models are need, which may lead to a slowdown of
1000X∼10000X [15]. Moreover, simulation with complex
multicore and multi-threaded applications may incur
inaccuracies and could lead to misleading conclusions
[35].

Binary instrumentation: Many binary instrument
tools (e.g. O-Profile [5], ATOM [41], DyninstAPI [2],
Pin [6], Valgrind [10], Nirvana [18] etc.) are popularly
utilized to profile applications. They are able to obtain
applications virtual access trace even without source
codes. Nevertheless, few of them can provide full system
memory trace because instrumenting kernels is very
tricky. PinOS [20] is an extension of the Pin [6] dynamic
instrumentation framework for full-system instrumenta-
tion. It is built on top of the Xen [14] virtual machine
monitor with Intel VT [36] technology and, is able to
instrument both kernel and user-level code. However,
PinOS can only run on IA-32 in uni-processor mode.
Moreover, binary instrumentation method usually slows
down target programs execution, incurring time distor-
tion and memory access interference.

Hardware counters: Hardware counters are able to
provide accurate events statistic (e.g. Cache Miss, TLB
Miss, etc.). Itanium2 [29] is even able to collect trace via
sampling. The approach of hardware counters is fast, low

overhead, but they can not track complete and detailed
memory reference trace.

Hardware monitors: Various Hardware monitors, di-
vided into two classes, are able to monitor memory trace
online. One class is pure trace collectors, and another
is online cache emulators. BACH [23][24] is a trace
collector. It utilizes a logic analyzer to interface with
host system and to buffer the collected traces. When the
buffer is full, the host system is halted by an interrupt
and the trace is moved out. Then, the host system
continues to execute programs. BACH is able to collect
traces from long workload runs. However, this halting
mechanism may alter original behavior of programs. The
hardware-based online cache emulation tools (such as
MemorIES [35], PHA$E [21], RACFCS [47], ACE [26],
and HACS [45]) are very fast and have low distortion
and no slowdown. Logic analyzer is also a powerful tool
for capturing signals (including DRAM signals) and can
be very useful for hardware testing and debugging.

However, these hardware monitors have several dis-
advantages: (1) they (except BACH) are not able to
dump full mass trace but only produce short traces due
to small local memories; (2) there is a semantic gap
problem for hardware monitors because they can only
collect physical address; (3) they depend on proprietary
interfaces, for example, MemorIES relies on the IBMs
6xx bus, BACH, PHA$E, ACE, HACS etc. adopt logic
analyzer which is quite expensive. RACFCS use a latch
board that directly connects to output pins of specified
CPUs. So they have poor portability.

Hardware emulators: Several hardware emulators are
thorough FPGA-based systems which utilize a number
of FPGAs to construct uni-processor/multi-processor re-
search platforms to accelerate research. For example,
RPM [16] emulates the entire target system within its
emulator hardware. Intel proposed an FPGA-based Pen-
tium system [32] which is an original Socket-7 based
desktop processor system with typical hardware periph-
erals running modern operating systems. RAMP [7] is
also a new scheme for architecture research. Although
they do not produce any memory traces currently, they
are capable of tracking full system trace. But they can
only emulate a simplified and slow system with relative
fast I/O, which enlarges the CPU-memory / memory-
disk gaps that may be bottlenecks in real systems.

8 CONCLUSION

In this paper we propose a hybrid hardware/software
mechanism which is able to collect memory reference
trace as well as semantic information. Based on this
mechanism, we have designed and implemented a pro-
totype system called HMTT (Hybrid Memory Trace Tool)
which adopts a DIMM-snooping mechanism to snoop
on memory bus and a software-controlled trace injection
mechanism capable of injecting semantic information
into normal memory trace. Comprehensive validations
show that the HMTT system is a feasible and convincing
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memory trace monitoring system. Several case studies
show that it is also effective and widespread. Thus,
the HMTT system demonstrates that the hybrid trac-
ing mechanism can leverage both hardware’s (e.g., no
distortion or pollution) and software’s advantages (e.g.,
flexibility and more information). Moreover, this hybrid
mechanism can be adopted by other tracing systems.
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mamurthy. Rpm: A rapid prototyping engine for multiprocessor
systems. Computer, 28(2):26–34, 1995.

[17] F. Bellard. Qemu, a fast and portable dynamic translator. In Usenix
Annual Technical Conference, 2005.

[18] S. Bhansali, W.-K. Chen, S. de Jong, A. Edwards, R. Murray,
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APPENDIX A
HMTT’S VERIFICATION AND EVALUATION

A.1 Verification

The HMTT system is verified in four steps:
1) As a basic verification, we have checked the physi-

cal address trace tracked by the monitoring board (MTB)
with micro benchmarks which generate sequential reads,
sequential writes, sequential read-after-writes and ran-
dom reads in various unites from cache line to page size.
The test results show that there are no incorrect physical
addresses.

2) A comparison with performance counter (use O-
Profile [5] with DRAM ACCESS event) is illustrated in
Figure 18. Note that the axis represent 29 programs of
SPECCPU2006 [9]. Through the figure, differences of
memory access numbers acquired by HMTT and per-
formance counter respectively are mostly less than 1%,
mainly incurred in initialization and finalization phases.

Fig. 17. Various Applications’ Miss Rates. Here, ”Miss
Rate” indicate the portion of those physical addresses
cannot be translated to virtual addresses due to un-
mapped I/O memory references.

Fig. 18. A comparison with Performance Counter. While
running 29 programs of SPECCPU2006 [9], we compare
the numbers of memory references collected by HMTT
and the numbers of DRAM ACCESS events collected by
O-Profile [5].

3) The following two steps are to verify software
parts of the HMTT system. Here, we present a case
of virtual address trace verifications. To obtain virtual
address trace, we adopt an assistant kernel module to
collect page table information. We have replayed virtual
memory trace to verify if physical addresses and virtual
address are corresponding. Figure 19 shows an example
of quicksorts virtual memory reference trace with an
input of 100,000,000 integers. Figure 19(b) shows the
virtual address space and its corresponding physical
address space of quicksorts data segment collected by

Fig. 19. An example of QuickSort program with an input
of 10M integers. (a) QuickSort’s virtual memory reference
pattern; (b) QuickSort’s page table information – virtual-
to-physical page mapping.

the kernel module. The virtual address region is lin-
ear but the physical address region is discrete. Figure
19(a) shows a piece of virtual memory trace, which
presents the exact reference pattern of quicksort. More-
over, the address space region (0xA2800∼0xA5800) also
belongs to the virtual address space of data segment
(0xA0000∼0xC0000) (Figure 19(b)).

4) Figure 17 shows miss rates which indicate the por-
tion of those physical addresses that cannot be translated
to virtual addresses. These ”misses” are generated due
to some I/O operations which are performed without
page mapping. As Figure 17 shown, the miss portions
of SPECCPU are nearly all less than 0.5%, while those
applications with more I/O accesses have miss portions
of over 1%. Note that we also introduce other I-Codes
(see figure 4) to further distinguish I/O memory refer-
ence, which will be discussed later.

The above verification works show that the HMTT
system is a feasible and convincing memory tracing
system.

A.2 Evaluations
The trace bandwidth is a crucial issue for the HMTT
system. We first adopt a mathematical method to an-
alyze the trace bandwidth issue. We let BW denote
trace bandwidth, cmdfrq denote the frequency of DDR
read/write commands 1, tracenum denote the number of
trace generated upon each DDR command and bitwidth
denote the bitwidth of each trace. Then we can calculate
the trace bandwidth in the following equation:

BW = cmdfrq ∗ tracenum ∗ bitwidth (3)

Next, we will present how to determine the values of the
three parameters. According to the timing diagram from
JEDEC specification [12], we can find that the maximal
frequency of DDR read/write command is dependent
on the parameter of CAS-CAS delay time (tCCD). On
the other hand, read and write accesses to the DDR2
SDRAM are burst oriented, which means that accesses
start at a selected location and continue for a burst length
(BL) of four or eight in a certain sequence. Thus, we can
get that:

cmdfrq =
FREQmem

max{2 ∗ tCCD,BL}
(4)

1. Note that trace is only generated on read/write commands.
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In practise, BL (Burst Length) is larger than 2*tCCD2.
So we can calculate the data transferred on memory bus
upon each read/write command as BL*WIDTHmembus.
Because most memory controllers handle memory re-
quests to read/write whole cache line which can be
identified as one memory trace, the parameter of tra-
cenum denoting the number of trace generated upon
each read/write command can be calculated as follows:

tracenum =
BL ∗WIDTHmembus

SIZEcacheline
(5)

Since BL ≥ 2*tCCD, Equation (3) is rewritten:

BW =
FREQmem ∗ WIDTHmembus ∗ bitwidth

SIZEcacheline
(6)

For instance, when we set trace bitwidth to be 40 bits, the
trace bandwidth for a dual-channel DDR2-400 machine
with 128-bit memory bus and 64-byte cache line can be
calculated as follows:

BWddr2−400 =
400MHz ∗ 128bits ∗ 40bits

64bytes
= 4Gb/s (7)

It should be noted that this is the peak trace bandwidth.
In practise, because applications have occasional burst
memory access phases, we find that it is sufficient to
adopt a 16K-entry FIFO to buffer traces and three Gigabit
Ethernet interfaces in the HMTT system to send memory
trace.

In hundreds of experiments, we have verified that
bandwidths of 3Gb/s and 1Gb/s are sufficient for DDR2-
400 and DDR-200 respectively. Table 5 illustrates trace
generation bandwidth of various applications on two
DDR-200MHz machine machines (SPECCPU2000, desk-
top and server applications are on an Intel Celeron
machine and SPECCPU2006 is on an AMD Opteron ma-
chine). The bandwidth varies from 5.7MB/s (45.6Mbps)
to 72.9MB/s (583.2Mbps) on Intel platform, and from
0.1MB/s (0.8Mbps) to 106.8MB/s (854.4Mbps) on AMD
platform. This indicates that a bandwidth of 1Gb/s is
sufficient for the HMTT system to capture all appli-
cations traces on Intel platform and most applications
traces on AMD platform. However, the high frequency
of DDR2/DDR3 memory and prevalent multi-channel
memory technology increase trace data generation band-
width. Therefore, the HMTT system supports three Gi-
gabit Ethernet interfaces currently and will adopt PCI-E
inerface to provide a bandwidth of 10Gb/s to overcome
the bandwidth problem.

The overheads of the HMTT system include trace
size, additional memory references, execution time of
I-Codes and kernel buffer for collecting extra kernel
data. Because applications usually generate billions of
traces during their execution periods, most trace sizes are
more than 10GB. The trace size is quite large, and large
capacity disks are demanded. Fortunately, it should not
be a problem because the disks are becoming larger and

2. For DDR/DDR2, usually BL is equal to 4 or 8 and the tCCD is
equal to 2. For DDR3, tCCD is equal to be 4.

TABLE 5
Trace Generation Bandwidth

Appication BW Appication BW
(MB/s) (MB/s)

S 164.gzip 33.9 S 168.wupwise 24.6
P 165.vpr 44.9 P 171.swim 65.8
E 176.gcc 44.5 E 172.mgrid 48.0
C 181.mcf 63.4 C 173.applu 47.9
2 186.crafty 27.3 2 177.mesa 11.2
0 197.parser 36.1 0 179.art 72.9
0 252.eon 8.7 0 183.equake 58.3
0 253.perlbmk 24.0 0 187.facerec 34.4
C 254.gap 29.3 C 188.ammp 46.4
I 255.vortex 32.8 F 189.lucas 41.7
N 256.bzip2 36.7 P 191.fma3d 33.8
T 300.twolf 48.7 200.sixtrack 5.7
* OpenOffice 10.5 301.apsi 44.4

RealPlayer 22.2 410.bwaves 42.98
@ SPECjbb2005 41.3 416.gamess 0.50
S 400.perlbench 8.27 433.milc 96.54
P 401.bzip2 33.60 S 434.zeusmp 34.14
E 403.gcc 85.48 P 435.gromacs 4.92
C 429.mcf 46.71 E 436.cactusADM 24.36
2 445.gobmk 11.00 C 437.leslie3d 84.84
0 456.hmmer 19.29 2 444.namd 1.19
0 458.sjeng 4.84 0 447.dealII 32.80
6 462.libquantum 102.04 0 450.soplex 69.39
C 464.h264ref 9.02 6 453.povray 0.10
I 461.omnetpp 60.14 C 454.calculix 3.67
N 473.astar 31.16 F 459.GemsFDTD 87.94
T 483.xalancbmk 29.16 P 465.tonto 26.06
* – Desktop App 470.lbm 106.82
@ – Server App 481.wrf 44.80

482.sphinx3 71.78

cheaper. On the other hand, Figure 4 illustrates that the
HMTT system adopt I-Codes to generate specific mem-
ory reference and collect extra kernel data. In fact, there
is almost no additional execution time while I-Codes
only generate specific memory references because those
specific memory references are less than one thousand
of normal memory references. For example, we have
experimented on an AMD machine and observed that
applications’ execution time is increased by less than
1% when I-Codes collect page table data upon every
page fault. To collect page table data, the assistant kernel
module requires to allocate a buffer which is less than
0.5% of total memory of traced system. Furthermore,
these specific buffers cannot induce significant influence
because those references to the specific buffers can be
filtered.
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