

DMA Cache: Using On-Chip Storage to Architecturally Separate I/O Data from
CPU Data for Improving I/O Performance

Dan Tang1,2,3, Yungang Bao1, Weiwu Hu1,2, Mingyu Chen1

1Key Laboratory of Computer System and Architecture, Institute of Computing Technology,
Chinese Academy of Sciences

2Loongson Technologies Corporation Limited
3Graduate School of Chinese Academy of Sciences

{tangdan, baoyg, hww, cmy}@ict.ac.cn

Abstract

As technology advances both in increasing bandwidth
and in reducing latency for I/O buses and devices, moving
I/O data in/out memory has become critical. In this paper,
we have observed the different characteristics of I/O and
CPU memory reference behavior, and found the potential
benefits of separating I/O data from CPU data. We
propose a DMA cache technique to store I/O data in
dedicated on-chip storage and present two DMA cache
designs. The first design, Decoupled DMA Cache (DDC),
adopts additional on-chip storage as the DMA cache to
buffer I/O data. The second design, Partition-Based DMA
Cache (PBDC), does not require additional on-chip
storage, but can dynamically use some ways of the
processor’s last level cache (LLC) as the DMA cache.

We have implemented and evaluated the two DMA
cache designs by using an FPGA-based emulation
platform and the memory reference traces of real-world
applications. Experimental results show that, compared
with the existing snooping-cache scheme, DDC can
reduce memory access latency (in bus cycles) by 34.8%
on average (up to 58.4%), while PBDC can achieve about
80% of DDC’s performance improvements despite no
additional on-chip storage.

1. Introduction

DMA technology provides special channels for CPU
and I/O devices to exchange I/O data, and the memory is
used for buffering the I/O data. When the CPU wants to
handle I/O data, it triggers the DMA write operations that
transfer the I/O data from I/O devices to the memory. On
the opposite direction of the CPU writing data to I/O
devices, the DMA read operations, i.e., transferring I/O
data from the memory to I/O devices, are performed.

In the past decade, the performance of I/O bus and
device has improved dramatically. New I/O bus
technologies, such as PCI-Express 2.0, AMD’s
HyperTransport 3.0 and Intel’s QPI, can provide bus
bandwidths of 10~20GB/s that are close to the bandwidth
of a DDR2/3 DRAM memory system. I/O device’s
bandwidth and latency have also substantially improved.

For example, using a single server, Fusion-io Company
recently adopted PCI Express and SSD technology to
exceed one million IOPS (I/O Operations Per Second)
and 8GB/s sustained throughput [1]. Unlike traditional
hard disks, SSD avoids mechanical delays so that it
usually has low access latency, e.g., experiments on
Intel® X25-E SSD demonstrate that the latency of
reading 4KB data is only 75us [2]. Additionally, the
latency of Infiniband’s RDMA operations can even be
less than 1us [5]. With these substantial technology
advances, moving I/O data in/out memory has become
critical for DMA scheme, because it exhausts a
substantial portion of memory bandwidth as well as
accounts for a considerable part of I/O operation latency.
Kumar et al. have profiled the execution of handling 4KB
network I/O data and found that buffer copy (i.e., I/O data
movement) is the largest single contributor to the overall
processing time per packet, accounting for over 25% [18].

To address this problem, researchers have proposed
several schemes to reduce the memory access overhead of
the DMA operations. Some studies proposed the cache
injection techniques that directly inject I/O data into a
processor’s cache [21-23]. Iyer proposed a chipset cache
to improve performance of Web Servers [15]. Intel
proposed a Direct Cache Access (DCA) scheme [14] that
has been implemented in the Intel 82599 10 Gigabit
Ethernet (GbE) controller [4]. Although these schemes
have demonstrated significant I/O performance
improvement for a few specific workloads under some
specific environments, their evaluation results are limited
because of the three reasons: (1) Little previous work
investigated the inherent characteristics of DMA memory
references, such as DMA request size and reuse distance
(the definition is in Section 2). The characteristic
differences between DMA and CPU memory reference
patterns, however, are significant for studying effective
optimization schemes. (2) Their studies mainly focus on
specific processors that are designed for some specific
applications, such as networking processors and
embedded processors. (3) Their conclusions are usually
drawn from studying one type of I/O such as network. In
real systems, e.g., Video-on-Demand servers and data
centers, however, various types of I/O operations can

Corresponding author: Weiwu Hu (hww@ict.ac.cn).

exist simultaneously. Moreover, different applications can
also combine different types of I/O. Thus the performance
of the existing optimization approaches may be sensitive
to different applications. Leon et al. have found that cache
injection approaches can provide significant performance
benefits, but it can also hurt some applications’
performance [19].

In this paper, by analyzing the memory traces of
various types of I/O operations, e.g., reading/writing disk
data and transmitting/receiving network packets, we
obverse the different characteristics of DMA and CPU
memory reference behaviors. For example, 1) the I/O
data’s reuse distances in the “DMA-Produce-CPU-
Consume (DPCC)” direction are much smaller than the
CPU data’s reuse distances, but the I/O data’s reuse
distances in the “CPU-Produce-DMA-Consume (CPDC)”
direction are very large; 2) the DMA memory references
are very regular, usually being linear within a DMA buffer.
In spite of the substantially different characteristics, most
previously proposed approaches still unify I/O data and
CPU data in a shared cache. Inspired by the idea of
separating instruction and data, we believe that separating
I/O data from CPU data is more likely to leverage the
inherent characteristics of DMA memory reference
patterns for improving I/O performance than unifying
them in one cache.

We propose a DMA cache technique, which uses
dedicated on-chip storage to store I/O data, to
architecturally separate I/O data from CPU data.
Nevertheless, the dedicated DMA cache imposes many
design challenges, especially the cache coherence issue.
To address the I/O data coherence challenge, we have
refined both the MOESI [3] and ESI [16] cache coherence
protocols for the DMA cache. This paper presents two
concrete DMA cache designs for various purposes. The
first design, Decoupled DMA Cache (DDC), adopts
dedicated on-chip storage as the DMA cache and is
suitable for IO-specific processors. DDC has little design
complexity, because it avoids modifying processor’s last
level cache (LLC) controller. The second design,
Partition-Based DMA Cache (PBDC), can dynamically
use some ways of a processor’s LLC as the DMA cache
so that it is suitable for general purpose processor. Owing
to no additional on-chip storage, the PBDC’s design cost
is much lower.

By using an FPGA-based emulation platform and the
memory reference traces of real-world applications
including file-copy, SPECWeb2005 and TPC-H, we have
implemented and evaluated the two DMA cache designs
as well as several previous unified approaches. The
experimental results show that although the previously
proposed share-cache scheme has high cache hit rates for
I/O data, its policy of unifying I/O and CPU data might
decrease performance (by up to 15.1%, the baseline being
the memory access latency of the traditional
snooping-cache scheme) because of cache interference. In
contrast, while separating I/O data from CPU data, DDC
can reduce the memory access latency (in bus cycles) by

34.8% on average (up to 58.4%), which is about 2.5X of
the Prefetch-Hint scheme [18]. Despite no additional
on-chip storage, PBDC can achieve about 80% of DDC’s
improvements. Additionally, we find that when using the
write-through policy for I/O data, I/O performance can be
further improved for all approaches we have evaluated.
The reason is that the write-back policy can convert the
contiguous DMA memory references into non-contiguous
memory-write operations to the DRAM controller, and
consequently degrade the controller’s performance owing
to DRAM row buffer conflicts [33]. We observe the
phenomenon by using a detailed memory controller from
a commercial CPU rather than a fixed-cycle DRAM
simulator.

The rest of the paper is organized as follows. In Section
2, we revisit the DMA mechanism and discuss the
characteristics of DMA memory reference. Section 3
presents the design of DDC and PBDC. In Section 4, we
describe the experimental setups. Section 5 presents and
discusses the experimental results. Section 6 and Section
7 present related work and summary respectively.

2. Revisiting DMA Mechanism

Before revisiting the DMA mechanism, we introduce
several important terms:

I/O data and CPU data: we define I/O data as a piece
of data produced by I/O devices directly. The data retains
the “I/O_attribution” until it is freed or updated by the
CPU. CPU data is defined as two parts: 1) the data not
produced by the I/O devices and 2) the I/O data updated
by the CPU. Take receiving network packets as an
example, the network DMA engine performs the
DMA-write operations to write payloads into the buffer
“sk_buffer->data”, wherein the data is considered as I/O
data until it is freed. When the data is copied from the
“sk_buffer->data” to other places (e.g., user buffer) by the
CPU executing data movement instructions, the new data
in the destination buffer is CPU data. If CPU updates the
data in the “sk_buffer->data”, the data also turns to be
CPU data. Note that the data retains its attribution when
transferred among caches via the interconnect network or
system bus in a multicore/multi-processor system.

DMA direction: there are two directions for DMA
operations, i.e., “DMA-Produce-CPU-Consume (DPCC)”
and “CPU-Produce-DMA-Consume (CPDC)”. The
DPCC direction indicates the DMA write operations that
write I/O data into the memory and the CPDC direction
indicates the DMA read operations that read I/O data
from the memory.

DMA request: usually one DMA request consists of a
number of memory references, each of which is for one
cache line. DMA request size is the memory footprint size
of one DMA request (see “DMA req size” in Figure 2).

Reuse Distance: the reuse distance (also called LRU
stack distance [17]) reveals data’s locality. As illustrated
in Figure 2, the reuse distance is the number of distinct
data elements, which are in terms of cache line in this

paper, accessed between two consecutive references to
the same element. The I/O data reuse distance in the
DPCC direction indicates the number of the distinct cache
lines accessed between when the data is produced by the
I/O devices and when it is consumed by the CPU, or vice
versa.
2.1 The Details of the DMA Operation

We take one DMA direction, i.e., the “DMA-Produce-
CPU-Consume (DPCC)” direction, as an example to
present the detailed processes of the DMA operations.
Figure 1 illustrates the interactions of processor, memory
and DMA engine (I/O device) in the DMA operations.
The interactions require three data structures, i.e., DMA
buffer, descriptor and destination buffer. Usually DMA
buffer’s start address varies in a physical address space
and the DMA buffer’s size also varies. To manage these
discrete DMA buffers, the driver uses the DMA
descriptors, each of which includes a pointer to the DMA
buffer’s start address and a variable of the DMA buffer’s
size, and several variables for status information such as
the DMA buffer’s owner (could be the processor or the
DMA engine). The detailed processes of the DMA
receiving operation, i.e., the “DPCC” direction, are
described as follows (see Figure 1):

Figure 1 The Interactions of processor, memory

and DMA engine in DMA operation
1). The device driver (processor side) creates a descriptor for

a DMA buffer. 2). The driver allocates a DMA buffer in the
memory and initializes the descriptor with the DMA buffer’s
start address, size and status information. 3). The driver informs
the DMA engine of the descriptor’s start address. 4). The DMA
engine loads the descriptor’s content from the memory. 5). With
the DMA buffer’s start address and size information extracted
from the descriptor, the DMA engine receives the data from the
I/O device and writes the data to the DMA buffer. 6). After all
I/O data is stored in the DMA buffer, the owner status of the
descriptor is modified to be the DMA engine. 7). The DMA
engine sends an interrupt to the processor to indicate the
completion of the receiving operation. 8). The driver handles the
interrupt raised by the DMA engine and copies the received I/O
data from the DMA buffer to the Destination buffer. Then, it
frees the DMA buffer. After all is done, go to 2).

Figure 2, from an architectural point of view, illustrates
the DMA data transfer flow in the DPCC direction on the
modern mainstream machines wherein the processors
adopt snooping-cache scheme for maintaining I/O data’s
coherence so that they need to send the snoop requests to

the processor’s data cache to invalidate those cache
blocks that the I/O data is hit. Consequently, when the
CPU consumes the I/O data, the compulsory misses will
take place and trigger the memory read requests to the
memory controller. (The data transfer flow for network
I/O can be found in the recent publications [18]).

Figure 2 DMA data transfer flow in the

“DMA-Producer-CPU-Consumer (DPCC)” direction
2.2 The Characteristics of DMA Memory Reference

We investigate the inherent characteristics of the DMA
memory reference, including the distributions of various
I/O types, the DMA request size, and the reuse distance.
We select three typical applications, File-Copy (a 400MB
file), SPECWeb2005 and TPC-H, because their behaviors
can represent the most other I/O intensive applications we
have examined. (More details on the experimental setups
and the trace collection are in Section 4).

Table 1 shows that the percentages of the DMA
memory references vary largely. For File-Copy
application, about 40% of the memory references are
relative to DMA operations; moreover the DMA read
references (19.6%) are almost equal to the DMA write
references (19.3%). For TPC-H dominated by the DMA
write requests (i.e., read data from disk to memory),
although the percentage of all DMA memory references is
about 20%, the DMA write references account for 19.9%.
For SPECweb2005, however, the percentage of DMA
memory references is only 1.0%. We find that the average
size of the network I/O requests is so small (< 0.3KB)
that the processor is often busy with handling interrupts.

Table 2 and Figure 3 show that the DMA request sizes
depend on both the I/O types and the application’s
behavior. In the file-copy and TPC-H applications, the
size of all DMA write requests is less than 256KB and the
percentage of the requests with the size of 128KB is about
76%. For the two applications, the average sizes of the
DMA write requests are about 110KB and 121KB,
respectively. For SPECweb2005, the size of all NIC DMA
requests is smaller than 1.5KB because the maximum
transmission unit (MTU) of the Gigabit Ethernet frame is
only 1518 bytes; compared with File-Copy and TPC-H,
the size of the IDE DMA requests is also very small, an
average of about 10KB.

The fifth column of Table 2 presents the percentages of
the sequential DMA memory references (i.e., Refn =

Read Data

DMA
Engine

Memory
Controller

Memory CPU
Cache

Write I/O
data Snoop

Write back

Memory
Write

Read

DMA
Produce

CPU
Consume

Reuse
Distance

DMA
Req Size

I/O Data

1

2
3

4

5

6 7

8

Processor

DMA
Engine

Descriptors

DMA buffer

Dest buffer

System Memory

5

Refn-1 + 1), which can be exploited by numerous
optimization approaches such as prefetching for
improving application’s performance. According to the
table, most of the DMA memory references have more
regular patterns than the CPU memory references. Take
TPC-H as an example: within one IDE DMA write
request whose average size is 119KB, about 96.8% of the
DMA memory references are sequential, covering the
115KB memory footprint. In contrast, only 4.1% of the
CPU write references are sequential. Nevertheless, the
NIC DMA write references, as an exception, have very
poor regularity, because the payloads are so small that
they usually cover only one or two cache lines. Ordinarily,
the larger the DMA request size, the more regularity there
is within the DMA request.

Table 1 Percentage of Memory Reference Types
 File Copy TPC-H SPECWEB
CPU Read 33.4% 60% 75%
CPU Write 27.7% 20% 24%
DMA Read 19.6% 0.1% 0.76%
DMA Write 19.3% 19.9% 0.23%

Table 2 Average Size of Various Types of DMA Requests
 Request Type Type (%) Avg. Size SeqRef(%)

File Copy

IDE DMA Read
IDE DMA Write
CPU Mem Read
CPU Mem Write

50.5%
49.5%

-
-

393KB
110KB

-
-

98.9%
96.7%
58.5%
60.6%

TPC-H

IDE DMA Read
IDE DMA Write
CPU Mem Read
CPU Mem Write

0.5%
99.5%

-
-

19KB
121KB

-
-

73.2%
96.8%
45.2%
4.1%

SPECWEB

IDE DMA Read
IDE DMA Write
NIC DMA Read
NIC DMA Write
CPU Mem Read
CPU Mem Write

24.4%
1.7%
52%
21.9%

-
-

10KB
7KB
0.3KB
0.16KB

-
-

95.3%
93.9%
48.6%
4.1%
25.5%
1.0%

 Figure 3 Cumulative distribution of DMA Request Size (KB)

Figures 4~6 illustrate the reuse distance statistics of the
I/O data and the CPU data. Comparing Figure 4 with
Figure 6, the I/O data’s reuse distances in the DPCC
direction are extremely smaller than the CPU data’s reuse
distance; but from Figure 5, the I/O data’s reuse distance
in the CPDC direction are very large. In the DPCC
direction, the portions of the small reuse distances (≤
32K cache lines) are near 90% for the disk I/O data and
about 48% for the network I/O data. Note that, 32K cache
lines correspond to 2MB, for one cache line is 64-Byte.
The small reuse distances indicate that the read latency is

significant to applications so that OS drivers tend to
process the I/O data immediately after the interrupt of a
DMA write operation completion. In contrast, the write
latency is unimportant, thus the I/O write requests can be
buffered and combined with other write requests. In the
CPDC direction, the reuse distances of the disk I/O data
in the file-copy and TPC-H applications are larger than
128K cache lines (8MB). The reuse distances of the disk
I/O data in SPECWeb is about 8K~128K cache lines
(512KB~8MB), accounting for a portion of over 80%.
The network I/O is different from the other types of I/O,
because the latencies of both transmitting and receiving
operations are crucial. Therefore, in the CPDC direction,
the reuse distances of the network I/O data (i.e.,
“SPECWeb CPU-W-NIC-R” in Figure 5) are also less
than 8K cache lines (512KB).
2.3 Architecturally Separating I/O data from CPU
data

As discussed in the last subsection, the characteristics
of DMA memory references to I/O data are indeed
different from the characteristics of memory references to
CPU data. The differences include: (1) the memory
references to the I/O data have more regularity, but the
reference patterns to the CPU data are uncertain; (2) the
I/O data’s reuse distances in the DPCC direction are
smaller than the CPU data’s reuse distances; (3) usually
the I/O data are used only once, and they are freed after
being copied, but the CPU data might be reused many
times. Therefore, separating the I/O data from the CPU
data is more likely to leverage the inherent characteristics
of DMA memory reference for improving I/O
performance than unifying them in one cache.

Although it is easy to conceptually separate I/O data
from CPU data (as defined in Section 2), it is difficult to
fully separate them on the architectural perspective. There
are two general methods to architecturally separating data.
The first method, using dedicated on-chip storage and
data path, is widely used for instruction cache and data
cache in the contemporary processor. Unlike the
instructions which are essential for program execution,
I/O operations are mainly performed in the I/O-intensive
applications. Therefore, using dedicated on-chip storage
for the I/O data can raise an important cost problem. The
second method is using the tainting scheme that adopts
one bit to tag data. Tagged prefetching [32] uses this
method to identify prefetched data. In recent years, the
tainting method is widely studied for software security
[25] by tagging the data as untainted (safe) and tainted
(unsafe). Nevertheless, many hardware tainting schemes
require a redesign of the entire computer system including
ALUs, registers, caches, buses and memory etc.

In this paper, we propose a DMA cache technique to
architecturally separate I/O data from CPU data by
combining the two methods. In the last level of the cache
hierarchy, the DMA cache technique adopts a dedicated
on-chip storage to store the I/O data; at the low levels (i.e.,
L1 and L2 caches), it uses one bit to tag a cache block to

0

20

40

60

80

100

0 1/8 1/2 2 8 32 128 512

cu
m
ul
at
iv
e
D
is
tr
ib
ut
io
n
of
 D
M
A

Re
qu

es
t S

iz
e(
%
)

File Copy IDE Memory Read File Copy IDE Memory Write
TPC‐H IDE Memory Read TPC‐H IDE Memory Write
SPECWEB NIC Memory Read SPECWEB NIC Memory Write
SPECWEB IDE Memory Read SPECWEB IDE Memory Write

indicate whether the block stores the I/O data or the CPU
data. Note that the DMA cache technique is not a fully
architectural separation method because the memory is
unified. Therefore, if the I/O data is written back from the
dedicated DMA cache to the memory, it would convert
into CPU data. In other words, later the data will be
refilled into the processor’s cache rather than the DMA
cache. We will discuss the design of the DMA cache in
detail in the next section.

3. Two Designs of the DMA Cache

Based on the concept of the DMA cache, we present
two concrete DMA cache designs in this section. The first,
Decoupled DMA Cache (DDC), adopts dedicated on-chip
storage as the DMA cache to buffer I/O data and is
suitable for I/O-specific processors. The second design,
Partition-Based DMA Cache (PBDC), can dynamically
use some ways of a processor’s LLC as the DMA cache
and is suitable for general purpose processors.
3.1 Decoupled DMA Cache (DDC)
3.1.1 Overview of DDC

As illustrated in Figure 7, the core of DDC consists of a
dedicated DMA Cache, Prefetcher and control/data paths.
The DMA Cache stores only I/O data and the LLC stores
only CPU data. Prefetcher is responsible for fetching I/O
data into DMA Cache in the CPDC direction. In the DDC
design, the cache coherence controller (CC-Ctrler) and
the LLC are not modified, reducing design complexity,
but the L1/L2 cache require adding one bit to each block
tag in order to indicate whether the block stores I/O data
or CPU data.
3.1.2 Write Policy of DMA Cache

Because cache write policy can influence coherency
protocol and replacement policy, we first discuss it. There
are two write policies, i.e., write-back (WB) and
write-through (WT). According to Subsection 2.2,
because the characteristics of DMA memory references to
I/O data are different from the characteristics of memory
references to CPU data, it might be unreasonable for the
DMA Cache to simply adopt the same write policy of the
processor’s data cache. Therefore, we desire to investigate

Figure 7 Organization of Decoupled DMA Cache

both the WB and WT policies. When adopting WB policy,
the I/O data written to the DMA Cache is initiated as
Modified-state and deferred to be updated into the
memory until it is replaced. When adopting WT policy,
the I/O data is written to the DMA Cache as well as the
memory; its initial coherence state is Exclusive-state so
that the I/O data can be replaced by later DMA writes
directly without extra update operations.
3.1.3 Cache Coherence

To address the cache coherence challenge, we have
refined the MOESI protocol [3] and the ESI protocol [16]
for WB and WT policies respectively, i.e., the IO-MOESI
(Figure 8) and the IO-ESI (Figure 9) protocols.
Essentially, the refined cache coherence protocols for the
DMA Cache are the same as the original MOESI/ESI
protocols.

The only difference between the IO-MOESI/IO-ESI
and the original protocols is exchanging the local sources
and the probe sources of the state transitions (see Table 3).
For example, if a CPU generates a write request to its
cache (i.e., local cache), the other CPU’s caches (i.e.,
remote cache) and the DMA Cache might receive the
same “Probe-Write” request. Therefore, the DMA Cache
can be viewed as a remote cache.

 For the DMA Cache, when using WB policy, it can
use the IO-MOESI protocol. When using WT policy, it
can use the IO-ESI protocol, in which if a read miss or a
write miss occur in the DMA Cache, the initial coherence
state for the filled data is Exclusive-state rather than the
Modified-state in MOESI protocol.

According to Figures 8~9, we describe the three main
DMA Cache transactions to show how the protocols work
(please refer to [31] for more details).

Figure 4 Cumulative distribution
(CDF) of reuse distance of I/O data

in the DPCC direction
Figure 5 Cumulative distribution
(CDF) of reuse distance of I/O data

in the CPDC direction

Figure 6 Cumulative distribution
(CDF) of reuse distance of CPU data

0

20

40

60

80

100

≤1 ≤4 ≤1
6

≤6
4

≤2
56 ≤1
K

≤4
K

≤1
6K

≤6
4K

≤2
56

K
≤1
M

≤4
M

≤1
6M

CD
F
of
 R
eu

se
 D
is
ta
nc
e
(%

)

Distance (Cache Lines)

File Copy IDE‐W‐CPU‐R
SPECWeb IDE‐W‐CPU‐R
SPECWeb NIC‐W‐CPU‐R
TPC‐H IDE‐W‐CPU‐R

0

20

40

60

80

100

≤1 ≤4 ≤1
6

≤6
4

≤2
56 ≤1
K

≤4
K

≤1
6K

≤6
4K

≤2
56

K
≤1
M

≤4
M

≤1
6M

CD
F
of
 R
eu

se
 D
is
ta
nc
e
(%

)

Distance (Cache Lines)

File Copy CPU‐W‐IDE‐R
SPECWeb CPU‐W‐IDE‐R
SPECWeb CPU‐W‐NIC‐R
TPC‐H CPU‐W‐IDE‐R

0

20

40

60

80

100

≤1 ≤4 ≤1
6

≤6
4

≤2
56 ≤1
K

≤4
K

≤1
6K

≤6
4K

≤2
56

K
≤1
M

≤4
M

≤1
6M

CD
F
of
 R
eu

se
 D
is
ta
nc
e
(%

)

Distance (Cache Lines)

File Copy CPU‐Ref
SPECWeb CPU‐Ref
TPC‐H CPU‐Ref

I-Cache
Core 0

D-Cache
L2 Cache

I-Cache
Core n

D-Cache
L2 Cache

Last Level Cache (LLC)

Cache Coherence Controller

Memory Controller

DMA Cache
Prefetcher

I/O Bus

Table 3 Sources of State Transitions
 Local Cache Remote Cache DMA Cache

MOESI/ESI MOESI/ESI IO-MOESI/IO-ESI
CPU Read Request CPU-Read Probe-Read Probe-Read
CPU Write Request CPU-Write Probe-Write Probe-Write
DMA Read Request Probe-Read Probe-Read DMA-Read
DMA Write Request Probe-Write Probe-Write DMA-Write

Figure 8 IOMOESI State Transitions for DMA Cache

with WriteBack Policy1

Figure 9 IOESI State Transitions for DMA Cache
with WriteThrough Policy2

(1) When the DMA Cache receives a DMA write
request, it first broadcasts a Probe-Read request to other
caches. If the Probe-Read request hits in a CPU’s LLC,
the LLC changes the hit block’s state to either
Shared-state or Owned-state, and sends data to the DMA
Cache. After receiving the most recent data, the DMA
Cache broadcasts a Probe-Write. The LLCs, in which the
Probe-Write hit, change the hit block with Shared-state or
Owned-state to Invalid-state. Then, the DMA Cache
changes the block to Modified-state (using IO-MOESI
with WB policy) or Exclusive-state (using IO-ESI with
WT policy where the data is updated into memory as
well). Then, a DMA write operation is completed.

(2) When a LLC meets read-miss, it broadcasts a
Probe-Read request. If the most recent data is in the DMA
Cache, the data would be refilled to the L2 cache directly,
bypassing the LLC. The DMA Cache changes the hit
block’s state from Modified-state to Owned-state (using
IO-MOESI with WB policy), or from Exclusive-state to
Shared-state (using IO-ESI with WT policy). The data
refilled into L2 cache is Shared-state and tagged with
“IO_Data” attribution. Then, the CPU read operation is
completed. Note that the block with “IO_Data” tag in the
L1/L2 cache is evicted directly without being swapped

into the victim buffer or the LLC.
(3) When a DMA read request arrives at DMA Cache,

if a miss occurs, a Probe-Read request is broadcast to
other caches via CC-Ctrler. If the request does not hit in
any caches, it is forwarded to the memory controller.
After receiving the desired data from the memory, the
DMA Cache sets the data as Exclusive-state; if a copy of
the data with Modified-state exists in other processor’s
cache, the processor’s cache forwards the data to the
DMA Cache and changes the block’s state to Owned-state,
and the DMA Cache set the block as Shared-state. Then,
the DMA read operation is completed. Note that a DMA
read operation can trigger prefetching operations that will
be described in Subsection 3.1.5.
3.1.4 Replacement Policy of DMA Cache

Because usually I/O data is used only once, it first
evicts the used I/O data. When using the IO-MOESI
protocol, the DMA Cache first selects the blocks with
Invalid-state, Shared-state and Owned-state for
replacement and then selects the Exclusive-state blocks;
finally the Modified-state blocks are selected. When using
the IO-ESI protocol, the DMA Cache first selects the
blocks with Invalid-state and Shared-state and then the
Exclusive-state blocks. If two or more blocks with a same
state exist for replacement, the LRU policy is used.
3.1.5 Other Design Issues

In the CPDC direction, the DMA read request on the
DMA Cache can trigger a prefetching operation. As
mentioned in Subsection 2.2, the I/O data has very regular
reference patterns, most being linear within a DMA buffer.
Therefore, the DMA Cache could benefit from adopting
even a straightforward sequential prefetching technique.
In our design, the prefetcher is triggered to generate four
sequential prefetching requests upon the state transitions
from Invalid-state to Shared-state or Exclusive-state. The
prefetching requests are forwarded to the cache coherence
controller as a Probe-Read request and the desired data
can be fetched from either some processor’s caches or the
memory of the system.
 The L1/L2 caches add one bit to each block tag to
indicate whether the block stores I/O data or CPU data.
The tag of the block can be propagated among the L1/L2
caches. The replacement policy of the L1/L2 caches
requires a slight modification in which the block with the
“IO_Data” tag is evicted directly without being swapped
into the victim buffer or the LLC. To propagate the tag,
the data paths also need to add one bit. When forwarding
blocks to other caches, the DMA Cache and LLC tag the
data copy as “IO_Data” and “CPU_Data”, respectively. In
other words, the DMA Cache is the source of “IO_Data”
tag and the LLC is the source of “CPU_Data” tag.
3.2 Partition-Based DMA Cache (PBDC)
3.2.1 Overview of PBDC

Partition-Based DMA Cache (PBDC) is designed to
achieve the same effect as DDC but without additional
on-chip storage. From Figure 10 that illustrates the
organization of PBDC in a multiprocessor system, PBDC

1,2 The dashed boxes indicate the changes to the original MOESI/ESI,
i.e., replacing “CPU‐Read/CPU‐Write” with “DMA‐Read/DMA‐Write”.

can use several ways of the processor’s LLC as the
dedicated DMA Cache. Because some important design
issues of PBDC, such as write policy, cache coherence
protocol, replacement policy, can adopt the same design
of DDC, we mainly focus on the design of the LLC’s
controller.
 3.2.2 The Design of Last Level Cache Controller
(LLC-Ctrler)

The LLC-Ctrler consists of Global Control Logic
(GCL), IO Data Controller (IOD-Ctrler), CPU Data
Controller (CPUD-Ctrler), two Prefetchers and
Configuration Module (CM).

Global Control Logic (GCL) is responsible for routing
the read/write requests and the Probe-Read/Probe-Write
requests to the right destinations. As shown in Figure 11,
it can 1) receive read/write requests from L2 caches and
forward them to CPUD-Ctrler, 2) receive the read/write
requests from the I/O bus and forward them to IOD-Ctrler,
3) receive the Probe-Read/Probe-Write requests from
CC-Ctrler and forward them to both IOD-Ctrler and
CPUD-Ctrler, 4) receive the probe requests from
IOD-Ctrler and forward them to CPUD-Ctrler and
CC-Ctrler, and 5) receive the probe requests from
CPUD-Ctrler and forward them to IOD-Ctrler and
CC-Ctrler.

I/O Data Controller (IOD-Ctrler) and CPU Data
Controller (CPUD-Ctrler) are responsible for write policy,
maintaining cache coherence, replacement policy and
tagging data for the I/O data ways (Way0 ~ Waym) and the
CPU data ways (Waym+1 ~ Wayn) respectively.
CPUD-Ctrler still adopts the original cache management
policies. IOD-Ctrler can use different policies for the I/O
data, e.g., the WT policy, the IO-ESI protocol and the
replacement policy of the DDC.

Figure 12 illustrates the flow of an L2 read request. (1)
When GCL receives the read request from the L2 cache, it

forwards the request to CPUD-Ctrler. (2) If the request
hits in the CPU data ways, the block tagged with
“CPU_data” is refilled to the L2 cache directly. (3)
Otherwise, a probe-read request is triggered and
forwarded to CC-Ctrler. Meanwhile, an internal
probe-read request is also generated to IOD-Ctrler. (4)~(5)
GCL merges all probe responses and (6) sends the
required data to the L2 cache. If the data is from the IO
data ways (Way0 ~ Waym), it would be tagged as “IO_data”
and IOD-Ctrler sets the block state as Owned-state or
Shared-state. Then, the “L2 cache miss read request” is
completed.

Configuration Module (CM) consists of a register. The
register has the same bit-width as the number of cache
ways and each bit indicates one way. If the bit is set to
“1”, the corresponding way is for I/O data; otherwise, the
way is for CPU data. Upon each read/write request,
IOD-Ctrler and CPUD-Ctrler use the register as the mask
to lookup the cache tags of the n-ways. Note that the
register can be dynamically configured by BIOS or OS
drivers but then the flush operations to the corresponding
ways are required.
3.3 Discussion of Design Complexity and Cost

There are trade-offs of design complexity and design
cost for the two designs. On design complexity, although
the designs both require the modifications of write policy,
cache coherence protocol, replacement policy and
prefetcher, the design of DDC mainly focuses on the the
additional DMA Cache, but PBDC requires substantial
modifications of the processor’s LLC controller.
Therefore, DDC has less complexity than PBDC. On
design cost, because PBDC requires no additional on-chip
storage and can dynamically use several LLC’s ways as
the DMA cache, it has less cost than DDC.
 In summary, DDC is suitable for the I/O-specific

Figure 10 Organization of PartitionBased DMA Cache (PBDC)

Figure 11 Global Control Logic (GCL) Delivering Requests

Figure 12 The Process Flow of L2 Cache Read Request

processors such as embedded processors, which are
designed for a class of the applications with known
program characteristics. PBDC is suitable for general
purpose processor because it is more flexible and has less
cost. For example, in a multiprocessor platform, we can
enable the DMA Cache function of only those processors
connected with I/O devices and disable others.
Furthermore, we can configure large DMA Caches for
I/O-intensive applications and even disable them for
computing-intensive applications.

4. Experimental Setup

4.1 Applications
We select three typical applications, because their

behaviors can represent most of the other I/O intensive
applications that we have examined. The selected
applications are described as follows:

(1) File-copy: A real-world application that copies one
400MB file (SPECCpu2006 install package) within Ext3
file system on the Linux platform. (2) TPC-H [7]: A
decision support benchmark. It consists of a suite of
queries and concurrent data modifications. The queries
and the data reside in an Oracle 11g database with 10GB
data. (3) SPECweb2005 [6]: A SPEC benchmark for
evaluating the performance of web servers. It is used for
measuring a system's ability to act as a web server.
4.2 The Trace Collection and the FPGA Emulation
Platform

We run all applications on an AMD Opteron 2.2GHz
sever with 2GB dual-channel DDR memory. We use the
HMTT system [10], a tool plugged in an idle DIMM, to
collect all memory reference traces. Moreover, the HMTT
system is capable of distinguishing whether a memory
reference is issued by the DMA engine or the processor.
Using the HMTT system, we have collected 40M
memory references (requests) for each application.
Because each requests is for 64 bytes (one cache line), the

footprint of 40M memory requests is about 2.6GB. It
should be reasonable for studying the behaviors of DMA
data transfer.

We have implemented our two designs as well as the
shared-cache and Prefetch Hint [18] schemes in an FPGA
emulation platform. Our cycle-accurate emulation
platform consists of a last level cache and a DDR2
controller from Godson-3 multicore processor [13], a
DDR2 DIMM model from Micron Technology. All
caches work at a frequency of 2GHz and the DDR2
controller works at 333MHz (i.e., DDR2-666). The whole
emulation platform is implemented in synthesizable RTL
codes. We use an FPGA based RTL emulation accelerator,
the Xtreme system [8] from Cadence, to accelerate the
emulation platform. More detailed emulation parameters
are listed in Table 4.

5. Experimental Results

In this section, we first evaluate the effect of separating
I/O data and CPU data (in section 5.1), the impact of
cache write policy (in section 5.2) and the cache
configurations (in section 5.3) by analyzing DDC’s
performance, and then we will compare the performance
of DDC, PBDC and the other schemes in section 5.4.
5.1 Separating I/O data and CPU data vs. Unifying
them

Figure 13 illustrates the normalized speedup of the
shared-cache scheme and DDC of various sizes and WB
policy (baseline is the memory cycles spending on the
memory bus in the existing snooping-cache scheme). We
find that even the small-size DMA caches can outperform
the shared cache scheme. For the DDC with Prefetcher,
the performance improvements are 30.1%, 11.9% and
10.2% for the three applications when setting the DMA
cache size to 256KB. However, the performance of DDC
is sensitive to the cache size. For example, the
64KB/32KB DMA caches may exhibit even worse
performance than the baseline for file-copy and TPC-H
applications. To find out the reason, we can review Figure
3 which shows that over 80% of the DMA requests' sizes
are larger than 64KB in the two applications. This
characteristic causes frequent replacements for the
modified blocks in the small-size DMA caches. Figure 17
illustrates that the replaced modified blocks account for
over 90% and 60% for file-copy and TPC-H respectively.
Unfortunately, those replaced modified blocks are
non-contiguous, causing poor DDR memory performance
due to lots of row buffer conflicts [33]. In SPECweb2005,
this phenomenon disappears because the average size of
the DMA requests is less than 10KB (see Table 2).

 Nevertheless, the small DMA request size can cause
the most CPU references to the I/O data being not
sequential , which can also cause poor DRAM
performance due to the row conflicts. When the CPU
references the I/O data from the DMA cache, the “CPU
RD MEM” cycles (see Figure 18) are significantly

Table 4 Evaluation Parameters of
CPU Last Level Cache and DMA Cache

 CPU LLC
Parameters

DMA Cache
Parameters

Size 2MB/4MB/8MB 512K/256K/
128K/64K/32K

Cache Line 64Byte 64Byte
Associative 8Way/16Way 1Way/2Way/4Way
Replace
Policy Random See Subsection 3.1.4

Write
Policy

CPU Data
Write Allocate &
Write Back (WB) 1. Write Allocate &

Write Back

2. Write Allocate &
Write Through

I/O Data
1. Write Allocate &
Write Back (WB)
2. Write Allocate &
Write Through (WT)

Access Time 20 Cycles 20 Cycles
Note: The WT policy for I/O data updates both the cache and the memory.
If a cache block is partially modified, the fetch-on-write operation is
triggered (i.e., the block will be read from the memory before being
updated). Our studies indicate that the probability of the partially modified
I/O write is very small.

reduced. Therefore, even though the percentage of the
DMA memory references in SPECWeb is small, the
optimization effect of the DMA cache is still obvious.

Figure 13 Normalized Speedup with Write Back Policy

Figure 14 Cache Hit Rate for I/O Data

Figure 15 Cache Hit Rate for I/O Data

Further, we investigate the “Cache Hit Rate for I/O
Data” metrics shown in Figure 14. The hit rate of the
share-cache for I/O data is determined by the reuse
distance of the I/O data (Figure 4) and the hit rate of
DMA cache is determined by the number of the distinct
I/O data cache lines between the I/O write reference and
the CPU read reference (Figure 15). Figure 4 shows that
the 90th percentile of the produce-consume reuse
distances is around “≤32K” cache lines (i.e. 2MB).
Figure 15, however, indicates that if separating I/O data
from CPU data, the produce-consume distances are
significantly reduced, all being less than 4K cache lines
(i.e., 256KB). Take “TPC-H IDE-W-CPU-R” as an
example, 96.4% of the reuse distance is less than 4K
cache lines (256KB) and 47.2% are less than 1K cache
lines (64KB). Consequently, the hit rate of the DMA
cache also changes down. It is interesting that although
the shared-cache decreases the performance for file-copy
(-15.1%) and TPC-H (-12.7%), it exhibits higher cache
hit rate for the I/O data than the 128KB DMA cache
without Prefetcher. We find that the reason is related to
the write-back policy and will present the reason in more
detail in next subsection.

5.2 Write-Back Policy vs. Write-Through Policy
When using the write-through policy, according to

Figure 16, all schemes including the shared-cache and the
small-size DMA caches can achieve improvements. The
DDC, with Prefetcher and WT, can achieve the speedups
of 58.4%, 35.4% and 10.5% when setting the DMA cache
size to 256KB. Moreover, in contrast to the negative
speedups (-15.1%, -12.7% and 1.1%) of the shared-cache
with WB policy shown in Figure 13, the shared-cache
with WT policy can even achieve positive speedups by
15.3%, 17.1% and 1.2%.

Figure 16 Normalized Speedup with Write Through Policy

Figure 17 The Percentage of DMA Writes Causing

Modified Block Replacement
We investigate why the write policy has a substantial

impact on the performance and find that the portion of
replaced modified blocks accounts for 80.0% and 55.8%
for shared-cache in the file-copy and TPC-H application
respectively (see Figure 17). Unfortunately, because the
replaced modified blocks can cause non-contiguous
write-back requests, the DDR DRAM exhibits poor
performance due to lots of row buffer conflicts. Moreover,
the contiguous I/O data may also be written back to
memory non-contiguously when they are replaced later.
Therefore, the memory access overhead due to the DMA
write requests is substantial. For example, according to
Figure 18, the portion of the “DMA WR MEM” in
shared-cache scheme accounts for 31.9% in file copy
application. The larger the DMA request size, the worse is
the negative influence on the DRAM system. Therefore,
because the average size of the DMA requests in
SPECWeb is less than 10KB, the negative influence on
the DRAM system is not obvious. It should be noted that
this phenomenon would be hidden in a fixed-cycle
DRAM simulator. We reveal it by using a detailed
memory controller from a commercial CPU.

When using the write-through policy, the I/O data is
written into the cache as well as the memory. Because the
I/O data in the DMA cache is with Exclusive-state, they
can be invalidated without any additional operations.
Consequently, the I/O data can be written in the memory

‐20

‐10

0

10

20

30

40

N
or
m
al
iz
ed

 S
pe

ed
up

of
 T
ot
al
 M

em
or
y
Cy
cl
es
(%

)

share‐cache

DDC‐256k‐p

DDC‐256k‐np

DDC‐128k‐p

DDC‐128k‐np

DDC‐64k‐p

DDC‐64k‐np

DDC‐32k‐p

DDC‐32k‐np
TPC‐HFile Copy SPECWEB

0

20

40

60

80

100

File Copy TPC‐H SPEC WEB

Pe
rc
en

ta
ge

 o
f D

M
A

W
ri
te
 R
ef
er
en

ce
by

 C
PU

 R
ea
d
In
 C
ac
he

(%
)

share‐cache

DDC‐256k‐p

DDC‐256k‐np

DDC‐128k‐p

DDC‐128k‐np

DDC‐64k‐p

DDC‐64k‐np

DDC‐32k‐p

DDC‐32k‐np

0

20

40

60

80

100

CD
F
of
 R
eu

se
 D
is
ta
nc
e
(%

)

Distance (Cache Lines)

File Copy IDE‐W‐CPU‐R SPECWeb IDE‐W‐CPU‐R
SPEC NIC‐W‐CPU‐R TPC‐H IDE‐W‐CPU‐R

0

10

20

30

40

50

60

File Copy TPC‐H SPEC WEB

N
or
m
al
iz
ed

 S
pe

ed
up

of
 T
ot
al
 M

em
or
y
Cy
cl
es
(%

)

share‐cache

DDC‐256k‐p

DDC‐256k‐np

DDC‐128k‐p

DDC‐128k‐np

DDC‐64k‐p

DDC‐64k‐np

DDC‐32k‐p

DDC‐32k‐np

0

20

40

60

80

100

File Copy TPC‐H SPEC WEB

Pe
rc
en

ta
ge

 o
f D

M
A

W
ri
te
s
Ca

cu
si
ng

 D
ir
ty

Bl
oc
k
Re

pl
ac
em

en
t(
%
) share‐cache

DDC‐256k‐p
DDC‐256k‐np
DDC‐128k‐p
DDC‐128k‐np
DDC‐64k‐p
DDC‐64k‐np
DDC‐32k‐p
DDC‐32k‐np

contiguously to reduce the substantial row buffer conflicts.
Take file-copy as an example, the portion of “DMA WR
MEM” cycles (see Figure 19) of the DMA cache with WT
schemes is reduced from 15.9% to 3.0%, which is close to
the portion in the snooping-cache scheme (2.7%). For the
shared-cache scheme, this portion is also reduced
significantly, from 31.9% to 8.6%, but it is still three
times more than the snooping-cache scheme because of
cache interferences between the CPU data and the I/O
data. The interferences can be eliminated in the DMA
cache schemes. Thus, from Figure 16, even the 128KB
DDC can outperform the shared caches by 2.9X
(32.5%/11.2%) on average for all applications. Note that
we will adopt the WT policy to evaluate the following
experiments.

Figure 18 Breakdown of Normalized Total Memory
Cycles with WriteBack Policy

Figure 19 Breakdown of Normalized Total Memory
Cycles with WriteThrough Policy

5.3 DMA Cache’s Associativity and Size vs.
Processor LLC Size

We fix the processor’s LLC size to be 2M and change
the DMA cache’s associativity from 1-way to 4-way.
Table 5 shows that the associativity parameter has little
impact on the performance of the schemes. For example,
when the DMA cache’s associativity changes from 1-way
to 4-way, the performance of the 256KB DMA cache with

the prefetcher is only improved by about 1.3%, 0.2%,
0.1%. The DMA cache size, however, has significant
impact on the performance. Take the 1-way DMA caches
with prefetching for example, when the sizes change from
256KB to 32KB, the improvements are substantially
decreased by 28.6% and 22.1% in file-copy and TPC-H
applications.

We change the processor LLC size from 2MB to 8MB
and fix the DMA cache’s associativity to be 4-way. Table
6 shows that the processor’s LLC size has a considerable
impact on the performance of the schemes. For example,
when the processor LLC size changes from 2MB to 8MB,
the performance of the 256KB DMA cache with the
prefetcher is improved by 5.5%, 11.3% and 5.4% for the
three applications respectively. Actually, the 128KB DMA
cache with a 2MB-LLC can substantially outperform the
share cache with a configuration of an 8M-LLC and the
WT policy.

Table 5 Normalized Speedup (%) of
Different DMA Cache Associative

DMA
Cache

Associative

DMA Cache (2MB Processor LLC)

256KB 128KB 64KB 32KB
P NP P NP P NP P NP

File
Copy

1 Way 57.0 36.0 50.1 30.1 30.1 16.5 28.2 13.8
2 Way 57.9 36.7 50.5 31.1 31.6 16.6 28.3 13.9
4 Way 58.3 37.0 54.9 34.5 31.3 16.3 28.3 13.9

TPC-H
1 Way 35.2 35.2 31.6 31.5 19.5 19.5 13.1 13.1
2 Way 35.3 35.2 31.8 31.8 19.7 19.8 13.2 13.2
4 Way 35.4 35.3 32.1 32.0 19.8 19.9 13.2 13.2

SPEC
Web

1 Way 10.4 10.2 10.3 10.1 10.4 10.1 10.3 10.1
2 Way 10.5 10.3 10.4 10.2 10.4 10.2 10.4 10.2
4 Way 10.5 10.3 10.5 10.2 10.4 10.2 10.4 10.2

Table 6 Normalized Speedup (%) of Different CPU LLC Size

CPU

Cache
Size

Shared
Cache

DMA Cache (4-Way)

256KB 128KB 64KB 32KB
P NP P NP P NP P NP

File
Copy

2M 15.2 58.3 37.0 54.9 34.5 31.3 16.3 28.3 13.9
4M 16.1 61.4 38.7 57.7 36.0 32.8 17.1 29.6 14.6
8M 16.9 63.8 40.0 57.6 37.2 34.0 17.6 30.7 15.1

TPC-H
2M 17.1 35.3 35.3 32.0 32.0 19.8 19.8 13.2 13.2
4M 20.3 40.5 40.4 36.4 36.4 21.8 21.8 14.1 14.1
8M 24.3 46.6 46.5 41.4 41.4 23.6 23.5 14.4 14.4

SPEC
Web

2M 1.1 10.5 10.3 10.5 10.3 10.4 10.2 10.4 10.1
4M 1.7 13.0 12.8 12.9 12.7 12.9 12.7 12.9 12.7
8M 2.6 15.9 15.7 15.8 15.7 15.7 15.6 15.7 15.5

As mentioned in Section 3.1.5, we have integrated a
sequential prefetching with a prefetching degree of four
cache blocks into the DMA cache schemes. The two
tables also show the effect of the prefetching for the DMA
read requests. Take file-copy that has a large portion of
DMA read request (see Table 1) for example: according to
Table 6, the 256KB DMA cache schemes with
prefetching outperform the non-prefetching schemes by
over 20%.
5.4 Decoupled DMA Cache vs. Partition-Based
DMA Cache

We compare DDC and PBDC as well as the
shared-cache and Prefetch Hint [18] in this subsection. In
the PBDC scheme, we have evaluated two LLC
configurations, i.e., using one way and two ways as the

0

20

40

60

80

100

120

sn
oo

p
sh
ar
e‐
ca
ch
e

D
D
C‐
25

6k
‐p

D
D
C‐
25

6k
‐n
p

D
D
C‐
12

8k
‐p

D
D
C‐
12

8k
‐n
p

D
D
C‐
64

k‐
p

D
D
C‐
64

k‐
np

D
D
C‐
32

k‐
p

D
D
C‐
32

k‐
np

sn
oo

p
sh
ar
e‐
ca
ch
e

D
D
C‐
25

6k
‐p

D
D
C‐
25

6k
‐n
p

D
D
C‐
12

8k
‐p

D
D
C‐
12

8k
‐n
p

D
D
C‐
64

k‐
p

D
D
C‐
64

k‐
np

D
D
C‐
32

k‐
p

D
D
C‐
32

k‐
np

sn
oo

p
sh
ar
e‐
ca
ch
e

D
D
C‐
25

6k
‐p

D
D
C‐
25

6k
‐n
p

D
D
C‐
12

8k
‐p

D
D
C‐
12

8k
‐n
p

D
D
C‐
64

k‐
p

D
D
C‐
64

k‐
np

D
D
C‐
32

k‐
p

D
D
C‐
32

k‐
np

Br
ea
kd

ow
n
of
 N
or
m
al
iz
ed

 T
ot
al
 M

em
or
y
 C
yc
le
s(
%
)

DMA RD MEM

DMA WR_MEM

DMA RD CACHE

DMA WR CACHE

CPU RD MEM

CPU WR_MEM

CPU RD CACHE

CPU WR CACHE

TPC‐H SPECWEBFile Copy

0

20

40

60

80

100

120

sn
oo

p
sh
ar
e‐
ca
ch
e

D
D
C‐
25

6k
‐p

D
D
C‐
25

6k
‐n
p

D
D
C‐
12

8k
‐p

D
D
C‐
12

8k
‐n
p

D
D
C‐
64

k‐
p

D
D
C‐
64

k‐
np

D
D
C‐
32

k‐
p

D
D
C‐
32

k‐
np

sn
oo

p
sh
ar
e‐
ca
ch
e

D
D
C‐
25

6k
‐p

D
D
C‐
25

6k
‐n
p

D
D
C‐
12

8k
‐p

D
D
C‐
12

8k
‐n
p

D
D
C‐
64

k‐
p

D
D
C‐
64

k‐
np

D
D
C‐
32

k‐
p

D
D
C‐
32

k‐
np

sn
oo

p
sh
ar
e‐
ca
ch
e

D
D
C‐
25

6k
‐p

D
D
C‐
25

6k
‐n
p

D
D
C‐
12

8k
‐p

D
D
C‐
12

8k
‐n
p

D
D
C‐
64

k‐
p

D
D
C‐
64

k‐
np

D
D
C‐
32

k‐
p

D
D
C‐
32

k‐
np

Br
ea
kd

ow
n
of
 N
or
m
al
iz
ed

 T
ot
al
 M

em
or
y
Cy
cl
es
(%

)

DMA RD MEM

DMA WR_MEM

DMA RD CACHE

DMA WR CACHE

CPU RD MEM

CPU WR_MEM

CPU RD CACHE

CPU WR CACHE

TPC‐HFile Copy SPECWEB

DMA cache respectively. Note that, in a 2MB 16-way
set-associative LLC, one way is 128KB; and in a 4MB
16-way set-associative LLC, one way is 256KB.

According to Figures 20 and 21, we can find that: (1)
DDC demonstrates better improvements than PBDC. For
example, with a 4MB LLC, the 256KB (1-way) PBDC
can achieve the improvements by 50.4%, 31.7% and 5.2%,
and the speedups of the 256KB DDC are 61.7%, 40.5%
and 13.0%. Therefore, with less design cost, PBDC can
achieve nearly 80% of the improvements of DDC; (2)
the shared-cache with WT scheme shows the performance
improvements by 16.1%, 20.4% and 1.7% in the 4MB
LLC setup, and the Prefetch-Hint scheme demonstrates
the improvements by 13.5%, 12.7% and 0.5%. Like the
within the shared-cache scheme unifying I/O data and
CPU data, the Prefetch-Hint scheme is neither unable to
reduce the cache interferences; moreover, it cannot
benefit from the write-through policy. Thus the
Prefetch-Hint scheme cannot outperform the shared-cache
with WT scheme. In fact, Prefetch-Hint scheme exhibits
the worst performance improvements in all schemes
while DDC performs best and the speedups of DDC are
about 3.4X of the Prefetch Hint.

Figure 20 Normalized Speedup of Four Schemes (2MB LLC)

Figure 21 Normalized Speedup of Four Schemes (4MB LLC)

6. Related Work

Architectural approaches for improving I/O
performance: there are numerous studies on caching I/O
data. The concept of the cache injection means injecting
I/O data into a CPU’s cache directly [19, 21-23]. Because
the injected I/O data and the CPU data share one cache,
the approach is also called shared-cache approach in this
paper. In the past several years, a few effective caching
schemes have been proposed, e.g., Iyer proposing a
chipset cache [15], Huggahalli et al. proposing the Direct
Cache Access (DCA) scheme [14] and so on. Kumar et al.
have shown the Prefetch-Hint scheme, which is a low
complexity implementation of the DCA, can improve
receive-side TCP/IP processing by 15.6%~43.4% [18, 17].
The DCA technology has been implemented in the Intel

82599 10 Gb Ethernet controller [4]. More recently, Berg
has evaluated various I/O data coherence schemes in the
embedded multicore systems [11]. However, as shown in
Leon et al.’s study [19], shared-cache approach can even
decrease application’s performance. It should be noted
that all these previous approaches unify I/O data and CPU
data in one cache. In this paper, by analyzing the
characteristics of I/O data, we propose architecturally
separating I/O data from CPU data and present two
concrete designs that perform better than previously
proposed approaches.

Partitioned cache approaches: The partitioned cache
approaches are proposed to reduce cache interferences
among the threads in multicore platform. Previous studies
mainly focus on what information to be used to partition a
shared cache and how to partition the cache. Stone et al.
[28] used information of change in cache misses to
statically partition a cache for multiple applications. Suh
et al. [30, 29] proposed dynamic partitioning of a shared
cache based on position information of cache hit
operations. Qureshi et al. [26] proposed utility-based
cache partitioning (UCP), a low-overhead, runtime
mechanism that partitions a shared cache between
multiple applications depending on the reduction in cache
misses. Lin et al. [20] proposed an OS page coloring
approach to partition a shared cache for multiple
concurrent applications in multicore platform. Chiou [12]
proposed a column-based cache partitioning scheme to
enable some columns to act as scratchpad memories and
to improve the predictability in a multitasking
environment. Naz et al. [24] proposed a split cache
approach for stream and scalar data and showed that it
can significantly reduce miss rate. Ranganathan et al. [27]
proposed a reconfigurable caches design that can
dynamically divide a cache into multiple partitions for
different usages such as TLB buffer, prefetched data and
user-controlled memory. Albonesi [9] also proposed a
minor-modification design for dynamical cache ways
allocation. Overall, these studies indicate the low design
cost of cache partition approaches. Nevertheless, there is
little work on using the cache partitioning technique for
improving I/O performance. We propose the PBDC
scheme that applies the column-based cache partition
technique to the processor LLC. Experimental results
shown that this technique can effectively eliminate cache
interferences between CPU data and I/O data and
significantly improve I/O performance.

7. Conclusions

In this paper, we have proposed a DMA cache
technique to separate I/O data and CPU data based on the
observations of the different characteristics of the DMA
and CPU memory reference behaviors. Concretely, the
I/O data’s produce-consume reuse distances inspire us to
separate I/O data from CPU data and to consequently
propose the DMA cache. The average sizes of various
types of DMA requests indicate the choices of the DMA

0

20

40

60

80

File Copy TPC‐H SPECWEB

N
or
m
al
iz
ed

 S
pe

ed
up

 o
f

To
ta
l M

em
or
y
Cy
cl
es

shared‐cache+WT
Prefetch Hint
DDC‐256k‐p
PBDC‐2w‐p
DDC‐256‐np
PBDC‐2w‐np
DDC‐128k‐p
PBDC‐1w‐p
DDC‐128k‐np
PBDC‐1w‐np

0

20

40

60

80

File Copy TPC‐H SPECWEB

N
or
m
al
iz
ed

 S
pe

ed
up

 o
f

To
ta
l M

em
or
y
Cy
cl
es

share‐cache+WT
Prefetch Hint
DDC‐256k‐p
PBDC‐2w‐p
DDC‐256k‐np
PBDC‐2w‐np
DDC‐128k‐p
PBDC‐1w‐p
DDC‐128k‐np
PBDC‐1w‐np

cache sizes. The percentages of the sequential DMA
memory references are used for the adoption of WT
policy and the prefetch scheme for the DMA cache.

We have presented two concrete DMA cache designs,
i.e., Decoupled DMA Cache (DDC) and Partition-Based
DMA Cache (PBDC), which are for I/O-specific
processors and general purpose processors respectively.
By using an FPGA-based emulation platform, we have
implemented and evaluated our designs and previous
unified approaches. Experimental results show that both
DDC and PBDC perform better than the existing
approaches that use unified, shared caches for I/O data
and CPU data.

Acknowledgment

We would like to thank Anand Sivasubramanium, Li
Shang and the anonymous reviewers for their insightful
feedback. We thank Kai Li, Yuanyuan Zhou, Lixin Zhang,
Weisong Shi, Jiang Lin, Paolo Ienne, Yunji Chen and the
ASL Group members for the valuable comments. This
research is supported by the National Natural Science
Foundation of China under grant numbers 60633040,
60925009, 60921002, 60903046, 60736012, 60673146
and 60603049, the National High Technology Research
and Development 863 Program of China under grant
numbers 2008AA110901, 2007AA01Z114 and
2007AA01Z112, the National Basic Research 973
Program of China under grant number 2005CB321600
and Beijing Natural Science Foundation under grant
number 4072024.

Reference
[1] http://www.fusionio.com/PDFs/Pressrelease_Pressrelease_

HP_1millionIOPS.pdf, 2009.
[2] http://www.intel.com/design/flash/nand/extreme/index.htm.
[3] AMD64 Architecture Programmer’s Manual Volume 2:

System Programming. 2007.
[4] Intel® 82599 10 GbE Controller Datasheet. July 2009.
[5] The LEADING Play In On-Demand Network Services.

Mellanox.
[6] SPECWEB2005. http://www.spec.org/web2005.
[7] The TPC benchmark H (TPC-H). http://www.tpc.org/tpch/.
[8] Xtreme System. http://www.cadence.com/products/fv/xtreme

series/Pages/default.aspx.
[9] David Albonesi. Selective Cache Ways: On-Demand Cache

Resource Allocation. in Proceedings of the IEEE/ACM
International Symposium on Microarchitecture. 1999.

[10] Yungang Bao, Mingyu Chen, Yuan Ruan, et al. HMTT: a
platform independent full-system memory trace monitoring
system. in ACM SIGMETRICS, 2008.

[11] T.B. Berg, Maintaining I/O Data Coherence in Embedded
Multicore Systems. Micro, IEEE, 2009. 29(3): p. 10-19.

[12] Derek Chiou, Prabhat Jain, Larry Rudolph, et al.
Application-specific memory management for embedded
systems using software-controlled caches. in Proceedings of
the 37th conference on Design automation. 2000.

[13] Weiwu Hu, Jian Wang, Xiang Gao, et al., Godson-3: A
Scalable Multicore RISC Processor with x86 Emulation.
IEEE Micro, 2009. 29(2): p. 17-29.

[14] Ram Huggahalli, Ravi Iyer, and Scott Tetrick, Direct Cache
Access for High Bandwidth Network I/O, in the Annual
International Symposium on Computer Architecture. 2005.

[15] R. Iyer. Performance implications of chipset caches in web
servers. in Proceedings of the 2003 IEEE International

Symposium on Performance Analysis of Systems and
Software. 2003.

[16] David Patterson John Hennessy, Computer Architecture: A
Quantitative Approach ， 3rd edition. 2003: Morgan
Kaufmann Publishers.

[17] A. Kumar, R. Huggahalli, and S. Makineni.
Characterization of Direct Cache Access on multi-core
systems and 10GbE. in IEEE 15th International Symposium
on High Performance Computer Architecture. 2009.

[18] Amit Kumar and Ram Huggahalli. Impact of Cache
Coherence Protocols on the Processing of Network Traffic.
in Proceedings of the 40th Annual IEEE/ACM International
Symposium on Microarchitecture. 2007.

[19] Edgar A. Leon, Kurt B. Ferreira, and Arthur B. Maccabe.
Reducing the Impact of the MemoryWall for I/O Using
Cache Injection. in Proceedings of the 15th Annual IEEE
Symposium on High-Performance Interconnects. 2007.

[20] Jiang Lin, Qingda Lu, Xiaoning Ding, et al. Gaining
insights into multicore cache partitioning: Bridging the gap
between simulation and real systems. in IEEE 14th
International Symposium on High Performance Computer
Architecture (HPCA). 2008.

[21] A. Milenkovic and V. Milutinovic. Cache Injection on Bus
Based Multiprocessors. in Proceedings of the The 17th IEEE
Symposium on Reliable Distributed Systems. 1998.

[22] Aleksandar Milenkovic and Veljko M. Milutinovic. Cache
Injection: A Novel Technique for Tolerating Memory
Latency in Bus-Based SMPs. in Proceedings from the 6th
International Euro-Par Conference on Parallel Processing.
2000.

[23] V. Milutinovic, A. Milenkovic, and G. Sheaffer. The cache
injection/cofetch architecture: initial performance
evaluation. in Proceedings Fifth International Symposium
on Modeling, Analysis, and Simulation of Computer and
Telecommunication Systems. 1997.

[24] Afrin Naz, Mehran Rezaei, Krishna Kavi, et al., Improving
Data Cache Performance with Integrated Use of Split
Caches, Victim Cache and Stream Buffers. ACM SIGARCH
Computer Architecture News, 2005.

[25] Guru Venkataramani. Ioannis Doudalis. Yan Solihin. Milos
Prvulovic. FlexiTaint: A Programmable Accelerator for
Dynamic Taint Propagation. in International Symposium on
High-Performance Computer Architecture (HPCA-14),.
2008.

[26] Moinuddin K. Qureshi and Yale N. Patt. Utility-Based
Cache Partitioning: A Low-Overhead, High-Performance,
Runtime Mechanism to Partition Shared Caches. in
Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture. 2006.

[27] Parthasarathy Ranganathan, Sarita Adve, and Norman
Jouppi. Reconfigurable Caches and their Application to
Media Processing. in ISCA. 2000.

[28] Harold S. Stone, John Turek, and Joel L. Wolf, Optimal
Partitioning of Cache Memory. IEEE Trans. Comput., 1992.
41(9): p. 1054-1068.

[29] G. E. Suh, L. Rudolph, and S. Devadas, Dynamic
Partitioning of Shared Cache Memory. J. Supercomput.,
2004. 28(1): p. 7-26.

[30] G. Edward Suh, Srinivas Devadas, and Larry Rudolph. A
New Memory Monitoring Scheme for Memory-Aware
Scheduling and Partitioning. in Proceedings of the 8th
International Symposium on High-Performance Computer
Architecture. 2002.

[31] Dan Tang, Yungang Bao, Weiwu Hu, and Mingyu Chen,
Architectural Exploiting Producer-Consumer Relationship
in DMA Data Transfer to Improve I/O Performance.
Tech_Report, 2009.

[32] Steven P. Vanderwiel and David J. Lilja, Data prefetch
mechanisms. ACM Comput. Surv., 2000. 32(2): p. 174-199.

[33] Zhao Zhang, Zhichun Zhu, and Xiaodong Zhang. A
permutation-based page interleaving scheme to reduce
row-buffer conflicts and exploit data locality. in
Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture. 2000.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Error
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /CMYK
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile ()
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

