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1. Introduction 

In modern multi-core chip architecture, the DRAM system is shared 
by more and more cores and high bandwidth I/O devices. This trend 
raises the memory contention problem and the memory QoS problem. 
Meanwhile, we find that multicore architecture also brings a large 
amount of unexploited memory-level parallelism (MLP). In order to 
exploit the MLP, we revisit the obsolete Virtual Channel Memory 
(VCM) technology [3]. The experimental results show that VCM is a 
good alternative to traditional DRAM chip on multicore architecture 
because it can not only improve performance but also reduce unfair-
ness. Thus, we suggest memory chip vendors reconsider the VCM 
technology for multicore architecture. 

2. Implementing VCM on a multi-core architecture 

Figure 1 illustrates VCM’s conceptual organization. Two commands, 
Prefetch and Restore, are introduced to transfer data between row 
buffers and channel buffers, each row buffer is divided into 4~16 
segments which is the basic transfer data size. Foreground operations 
and background operations can also be executed independently, so 
VCM can exploit more MLP than traditional DRAM chip. Figure 2 
illustrates the VCM memory controller, the memory request buffers 
are distributed as a number of separated channel request buffers and 
the physical memory address is translated into VCM address in the 
form of <bank, row, segment, column>. Based on this, we further 
implement the state of the art scheduling algorithms on VCM, in-
cluding FR-FCFS [4], PARBS [2], and ATLAS [1]. 

3. Experimental Results 

Figure 3 shows the normalized IPC (NIPC) speedups of memory 
intensive applications running on a 16-core system with 8 memory 
banks. On average, VCM with 32 1KB-channel buffers achieves 
2.08X performance speedup against the baseline FR-FCFS system, 
while eight 8KB-row buffers provide only 1.15X improvements.  

Figure 4 shows the weighted speedup (system throughput) of het-
erogeneous memory intensive workloads on a 16-core system. For 
VCM with FR-FCFS, it improves system throughput by 1.66X. Since 
applying PAR-BS and ATLAS to VCM changes system throughput 

slightly, by only 5.9% and 0.03% respectively. This means that VCM 
is inherently able to eliminate unfairness and improve system 
throughput. 

From our perspective, we suggest memory chip vendors recon-
sider the VCM technology for multicore architecture. 
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