
A Network Memory Architecture Model and Performance Analysis

Li Liu†‡, Mingyu Chen†,Yungang Bao†‡, Jianwei Xu†‡, Jianping Fan†
† Key Laboratory of Computer System and Architecture, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, China
‡ Graduate School of Chinese Academy of Sciences, Beijing, China

{ liuli,baoyg,xjw}@ncic.ac.cn {cmy,fan}@ict.ac.cn

1. Introduction
High-speed electrical circuit and optical interconnection

technique bring us high-bandwidth and low-delay network. It
is possible to use network memory to satisfy the memory
bandwidth and capacity requirements in multiprocessor
system. Previous researches have proposed that the optical
interconnection technology can innovate memory architecture
[1,2]. This paper presents the performance study of a network
memory architecture based on the idea of Dynamic Self-
organized Architecture based on Grid-component (DSAG)
[1].

But the long latency caused by remote memory access
makes the imbalance between CPU and memory even harder,
which will incur system slow-down. Most software based
network memory systems were only used as network block
devices and large amount of local memory were still needed.

The motivation for the research of this paper came from
the questions: Is remote memory feasible if remote assess
delay can be decreased to certain low level? How does the
remote access delay influence application performance? How
to use cache and prefetching to improve the performance?

To answer these questions, we assume an ideal network
memory architecture and make a performance model to
analyze the slowdown caused by the remote access delay.

Figure 1： Remote memory architecture

2. Network Memory Architecture and
Performance Model

In Figure 1 we present a Network Memory Architecture.
The Smart Memory Controller (SMC) can access remote
memory by hardware directly. The Memory Access Monitor
Engine (MAME) monitors all memory access and provides
hint to Prefetching Engine (PE) to do prefetching. Local

memory is only used as local page buffer cache and local
prefetching buffer. The cache and prefetching pages are all
indexed by virtual page address and cache line size is 4K
also.

If the accessed page is in local page buffer cache, SMC
access it directly, else SMC does a remote memory access
operation to get it and put it into the local page buffer cache.
When the page is replaced out of the cache, SMC writes it
back to the remote memory if it is dirty, or put it into the
prefetching buffer if needed ;otherwise discards it.

The application slowdown caused by remote memory is
evaluated through a performance model based on some real
system memory access traces including Linpack, Blast,
Quicksort and SPEC2000 got by HMTT [4].

The memory trace collection tool HMTT is able to
monitor the DIMM slot to get the memory access trace data.
The trace contain following information (process id (16bit),
address (physical/virtual, cache line level, 16bit), read/write
bit, duration time (ns level, 17 bit)).

Application slowdown and remote access ratio are defined
to evaluate the remote memory system. We also defined
some delay parameters in the model including local buffer
cache access delay (100ns), local prefetching buffer access
delay (100ns) and set remote memory as 5us, 10us, 20us,
40us and 80us respectively to evaluate the performance. The
local memory configed for each processor is set as 1MB,
2MB, 4MB, and 8MB respectively because the memory on
the test platform is restricted within 512MB.

To get the baseline performance we test the influence of
remote access delay on 4MB cache and the influence of page
cache size under 5us delay. The result shows that local buffer
cache can reduce the remote access ratio greatly and larger
local cache can work better. But for some application as
Linpack, Quicksort and most SPEC2000 benchmarks as
Swim, increasing cache size only can’t always improve the
performance greatly and remote access delay affects system
performance gravely.

Influence Parameter (IP) is defined to evaluate influence.
 IP=|(Slowdown Ratio)m - (Slowdown Ratio)n| / (m - n).
For remote delay, it is computed when delay is increased

from 5us*2m to 5us*2n. For cache size, it is computed when
cache size is increased from 1MB*2m to 1MB*2n.

IP result shows that remote access delay influences harder
than cache size for applications as Linpack, Quicksort, which

Smart Memory
Controller(SMC)

Buffer cache
/Prefetching buffer

MAME

CPU cache

Remote memory

Prefetching Engine (PE)

International Conference on Networking, Architecture, and Storage

978-0-7695-3187-8/08 $25.00 © 2008 IEEE

DOI 10.1109/NAS.2008.22

177

International Conference on Networking, Architecture, and Storage

978-0-7695-3187-8/08 $25.00 © 2008 IEEE

DOI 10.1109/NAS.2008.22

177

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 04:49 from IEEE Xplore. Restrictions apply.

have regular memory page access patterns. So for the
applications that have regular memory page access pattern, as
Linpack, it is the key to make the remote access delay
decrease to a low level that can be acceptable.

To further improve performance a prefetching engine
based on stream analysis is given under the architecture.

3. Page Frame Stream Prefetching

To find the application memory access pattern, the virtual
page traces for regular access application, such as Linpack,
Quicksort, swim, were researched. It can be seen from
figure2 that Linpack and Quicksort have linear page stream
pattern when access to the memory that caused the page
cache misses. The stream is caused by the for() cycle or
matrix computing that is common in the scientific
applications. So a stream-prefetching engine is presented to
get the pages ahead.

Figure 2. Linpack , Quicksort memory page access

This paper gives a stream check algorithm that is similar
to Tushar Mohan’s algorithm [3]. We use local buffer cache
miss data to check stream to avoid the address repeat pattern
problem and use the timestamp to define an aging policy to
help creating and deleting the stream. When local buffer
cache miss PE adds the page frame address into check buffer.

The algorithm is described as follows:
1: add new page frame information (address, time stamp)

into checking window; tag the node as available, goto 2;
2: To check whether the address is in a stream. If it is in a

stream, update the stream (length, time stamp), tag the node
as unavailable. If the node is in multi streams, repeat to
update every stream, goto 1; else, goto 3;

3: To check new node address A with older available node
B and C in the checking window. If the address A and B can
satisfy A-B=B-C and C is older than B, a new stream is
found. So tag A, B, C as unavailable and add the stream into
stream pool; goto 1;

If accessed page is in a stream the stream updates its
information and prefetchs next page. If the prefetched page is
in local memory, we avoid the prefetching and adjust the
node location to prefetching buffer if it is deleted in the cache
by LRU, else send remote access request to prefetch it.

Simulation shows that this algorithm will not cost too
much resource (mostly live streams <60) and most
applications have high stream covering ratio (>90%) except
Blast and Lucas because of their memory access characters.

Many prefetching can’t be done before the page be
accessed under singlestep prefetching policy (only get next
page) because stream time stride may be less than remote
access delay. So a multistep policy (get next n pages) based
on time stride is given to solve the problem.

We also compare the performance and communication
costs for sequence prefetching, stream prefetching and
seq+stream that mix the two algorithms in Figure3, 4.

The results show that with the help of cache and stream
prefetching, for applications that have regular memory
access patterns, the performance slowdown is less than 2(for
Linpack it is 1.4; for SPEC it is 2.56 average, most less than
2) and cause no more communication cost when remote
access delay decreases to 5us.

0%
20%
40%
60%
80%
100%
120%

L
i
n
p
a
c
k

Q
u
i
c
k
s
o
r
t

B
l
a
s
t

H
m
m
e
r

g
z
i
p

g
a
p

w
u
p
w
i
s
e

m
g
r
i
d

a
p
p
l
u

e
q
u
a
k
e

l
u
c
a
s

f
m
a
3
d

re
m

ot
e

ac
ce

ss
 ra

te

seq single seq greed stream single stream greed

 Figure 3. Remote access rate comparison on 4MB cache,
5us remote delay

0%
200%
400%
600%
800%

1000%

L
i
n
p
a
c
k

Q
u
i
c
k
s
o
r
t

B
l
a
s
t

H
m
m
e
r

g
z
i
p

g
a
p

w
u
p
w
i
s
e

m
g
r
i
d

a
p
p
l
u

e
q
u
a
k
e

l
u
c
a
s

f
m
a
3
d

c
o
m
m
u
n
i
c
a
t
i
o
n

c
o
s
t

seq stream seq+stream

Figure 4. Communication cost comparison

4. Conclusion
It is feasible to build flexible extended remote memory

architecture to break the memory capacity restrict for some
memory-bound applications with a little performance
decrease and the memory can be extended easily and
unlimitedly.

References
[1] Jianping Fan, Mingyu Chen. “Dynamic Self-organized
Architecture based on Grid-component DSAG”. Journal of
Computer Research and Development. 2003 Vol.40 No.12.
[2] Y. Katayama and A. Okazaki. “Optical Interconnect
Opportunities for Future Server Memory Systems”. HPCA-13
[3] Tushar Mohan, Bronis R. de Supinski, Sally A. McKee, Frank
Mueller, Andy Yoo, Martin Schulz, “Identifying and Exploiting
Spatial Regularity in Data Memory References”, Supercomputing
Conference 2003, November 2003.
[4] Yungang Bao, Mingyu Chen, Yuan Ruan, Li Liu, Jianping Fan,
Qingbo Yuan, Bo Song, Jianwei Xu, "HMTT: A Platform
Independent Full-System Memory Trace Monitoring System",
SIGMETRICS’08.

178178

Authorized licensed use limited to: IEEE Xplore. Downloaded on December 5, 2008 at 04:49 from IEEE Xplore. Restrictions apply.

