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Abstract 

In this paper, we investigate the nature of 
DMA mechanism wherein there is an explicit 
product-consume relationship. Base on this 
observation we propose a DMA Cache 
technique to improve performance of DMA 
operations. To evaluate this technique, we 
adopt a hardware-based memory trace 
collection tool and an FPGA-based trace-
drive emulation system. Experimental results 
show that DMA Cache can improve I/O 
performance significantly.  

1. Introduction 

I/O accesses are essential on modern 
computer systems, whenever we load binary 
files from disks to memory or download files 
from network. Moreover, many commercial 
workloads (e.g., database server, web server 
etc.) are I/O intensive. I/O buses and I/O 
devices technologies have been improved 
dramatically in the past decade. New I/O bus 
technologies, such as PCI-Express 2.0, 
AMD’s HyperTransport 3.0 and Intel’s CSI 
(QPI), can provide bandwidths of over 
20GB/s which are very close to that of a 
DDR2/3 DRAM memory system. The I/O 
devices performance also increases 
significantly so that a RAID system is able to 

provide a bandwidth of 600MB/s easily and 
the 10Gb Ethernet can offer a bandwidth of 
1.25GB/s.  

DMA technique is used to release 
processor from I/O process, which provides 
special channels for CPU and I/O devices to 
exchange I/O data. However, as the 
throughput of the I/O devices grows rapidly, 
memory data moving operations have become 
critical for DMA scheme, which becomes a 
performance bottleneck for I/O operations. 
We investigate the nature of DMA and find 
that 1) there is an explicit producer-consumer 
relationship between CPU and DMA and 2) 
memory only play a role of transient place for 
I/O data. If we replace memory with a high 
speed buffer (e.g. a cache) as this transient 
place, the I/O performance may be improved 
significantly.  

We propose a DMA cache technique which 
is adopting a dedicated cache (called DMA 
Cache) for buffering I/O data. This technique 
enables CPU and I/O device to exchange data 
between last level cache (LLC) and a DMA 
cache. The DMA cache technique can 
significantly reduce unnecessary memory 
data moving operations and largely improve 
I/O performance. 

To evaluate the DMA Cache technique, we 
enhance a hardware-based memory trace 



collection tool, i.e. HMTT [1], to be able to 
distinguish CPU memory references and 
DMA memory references. With such an 
approach, we collect all CPU and DMA 
memory reference traces of various real 
applications (file copy, TPC-H and 
SPECweb2005) on a real machine. We adopt 
a RTL-based trace-driven emulation system 
mainly consisting of commercial components, 
e.g., L2 Cache, memory controller and 
DIMM model, to evaluate the proposal.  We 
also use the FPGA-based RTL emulation 
accelerating system which is the Xtreme 
system [2] from Cadence to accelerate 
emulation.  

Experimental results show that the DMA 
cache technique improves performance by an 
average of 11.8% for a 256KB DMA cache 
with sequential prefetching for all 
benchmarks (up to 20.7% for a file-copy 
application) when using snooping-cache as 
baseline, and it performs best among all 
schemes we have evaluated (e.g., snooping-
cache scheme, shared-cache scheme). 

The rest of the paper is organized as 
follows. In Section 2, we introduce the DMA 
mechanism and reconsider the role of 
memory in DMA process. Section 3 describes 
our efforts in promoting research 
methodology. Section 4 introduces our recent 
research results that we propose and evaluate 
a DMA Cache scheme for improving I/O 
performance. In Section 5, we discuss related 
work. We present future work in Section 6. 

2. The Nature of DMA Mechanism 

Figure 1 depicts the interaction of 
processor, memory and I/O device in DMA 
receiving mechanism. As shown in the figure, 
the interaction requires three data structures, 

i.e. DMA buffer, descriptor and APP buffer1. 
Usually DMA buffers’ start address can vary 
in physical address space and their size also 
varies. DMA descriptors are used to manage 
these discrete DMA buffers. Each descriptor 
includes a pointer of DMA buffer’s start 
address and a variable of DMA buffer’s size. 
Each descriptor also includes some variables 
of status information such as DMA buffer’s 
owner (could be processor or DMA engine). 

According to the DMA receiving 
mechanisms, we can find that the essence of 
DMA scheme is that processor and I/O device 
have an explicit producer-consumer 
relationship. For instance, DMA engine is 
producer and processor is consumer in DMA 
receiving mechanism. Moreover, usually once 
data is produced, it will be used once and 
only once in most cases. This essence also 
exists in the DMA transmitting mechanism.  

Furthermore, we can find that memory only 
plays a role of transient place for storing I/O 
data transferred between processor and I/O 
device. In DMA receiving processes, the data 
source is DMA engine (or I/O device) which 
writes source data (I/O data) to DMA buffer 

                                                 
1 It should be noted that the “APP buffer” could be a buffer 
in kernel space or user space. 

Figure 1. DMA Receiving Mechanism



(see Step 5 in Figure 1). To provide I/O data 
for user applications, device driver performs 
an additional memory copy operation which 
copies I/O data from DMA buffer to the 
eventual destination – APP buffer2 (see Step 
8 in Figure 1). Once I/O data is copied to the 
eventual destination (APP buffer), DMA 
buffer is freed. Device driver will allocate a 
new DMA buffer for a new DMA receiving 
operation. However, the start address of the 
new DMA buffer is usually different from the 
previous freed one.  

Based on the findings, we can conclude 
that the I/O performance should be improved 
significantly if the overhead of these 
additional memory-copy operations can be 
reduced. However, only a few people (e.g., 
DCA proposed by Huggahalli, Iyer and 
Tetrick [3]) realize the nature of DMA 
mechanism and, there are a large space for 
leveraging the nature of DMA mechanism for 
improving I/O performance while design 
computer architectures. 

Next, we will introduce our research 
approaches in section 3 and some particular 

                                                 
2 I/O data may not be copied from DMA buffer to APP 
buffer. For example, the copy operations are not performed 
upon invalid or duplicate network packets. 

results on I/O subsystem section 4. 

3. Research Methodology 

Usually we use trace-driven simulation (or 
emulation) method for memory system and 
I/O system research. However, there are two 
substantial obstacles of effective simulation 
and emulation, i.e., 1) it is hard to collect an 
ideal memory trace which should be complete, 
detailed, undistorted and so forth [4]; 2) 
software simulation usually has speed and 
scalability limitations. 

To overcome the two obstacles, we adopt a 
hardware snooping tool to collect all memory 
reference traces and an FPGA-based trace-
driven emulation system to evaluate our 
proposals.  

3.1 HMTT: A Hyper Memory Trace Tool 

HMTT [1] is a platform independent full 
system memory trace monitoring system. The 
system adopts a DIMM-snooping mechanism, 
which uses hardware boards plugged in 
DIMM slots to track virtual memory 

Figure 3. The Memory Trace Collection 
Framework 

Figure 2. The HMTT Tool 



reference trace of full systems (including OS, 
VMMs, libraries, and applications). Figure 2 
shows a photo of HMTT in working state. 
Furthermore, HMTT provides APIs for user 
to inject user-defined tags into memory trace.  

To distinguish a memory reference issued 
by DMA engine or processor, we have 
inserted HMTT’s APIs into the device drivers 
of hard disk controller and network interface 
card (NIC) on Linux platform. Figure 3 
illustrates the memory trace collection 
framework. When the modified drivers 
allocate and release DMA buffers (see details 
in section 2), they record start address, size 
and owner information of a DMA buffer. 
Meanwhile, they send synchronization tags to 
the HMTT system. When the HMTT system 
receives synchronization tags, it injects tags 
(DMA_BEGIN_TAG or DMA_END_TAG) 
into physical memory trace to indicate that 
those memory references between the two 
tags and within the DMA buffer’s address 
region are DMA memory references initiated 
by DMA engine. The status information of 
DMA requests, such as start address, size and 
owner, is stored in a reserved physical 
memory and is dumped into a file after 
memory trace collection is completed. Thus, 
there is no interference of additional I/O 
access. We can differentiate DMA memory 
reference from processor memory reference 
by merging physical memory trace and status 
information of DMA requests. 

We run all the benchmarks on a server 
machine. The server is an AMD Opteron 
2.2GHz processor and 2GB dual-channel 
DDR memory machine. We use HMTT to 
collect memory reference traces of three real 
applications (file-copy, TPC-H, and 
SPECweb2005). 

3.2 FPGA-based Trace-driven Emulation 
System 

We adopt an FPGA platform to emulate 
cache system. Our cycle-accurate 
experimental system consists of a last level 
cache and a DDR2 controller from the 
Godson-2F processor, a DDR2 DIMM model 
from Micron Technology [5]. The whole 
cache emulation system is implemented in 
synthesizable RTL code. We use an FPGA 
based RTL emulation accelerator, the Xtreme 
system [2] from Cadence, to accelerate this 
system. A new design can be embedded into 
the cache emulation system for evaluation. 

A combination of the HMTT memory trace 
collection tool and the trace-driven FPGA-
based cache emulation system has 
significantly reduced our research periods. 
For example, we can use HMTT to collect 
memory traces with user-aware tags from 
various real machines without any slowdowns, 
analyze memory traces to gain some 
observations and insights and evaluate new 
ideas in the FPGA-based emulation accelerate 
system. In such a method, the research period 
can be reduced to only a few hours from trace 
collection, off-line analysis to emulation and 
result data collection.  

4. The DMA Cache for Improving I/O 
Performance 

In this section, we demonstrate our recent 
research results of a DMA Cache technique 
for improving I/O performance. 

4.1 DMA Cache Scheme 

The DMA cache is a dedicated cache for 
buffering I/O data. Like shared-cache scheme 
(i.e., DCA [3]), it is advantageous in reducing 



the overhead of unnecessary memory copy 
operations. Unlike shared-cache scheme, the 
DMA cache technique is able to avoid 
interferences between processor and DMA 
engine. Furthermore, the DMA cache is 
beneficial from adopting straightforward 
prefetching technique because it only serves 
I/O data which has very regular reference 
pattern. Thus, CPU and I/O device can 
exchange data between the DMA cache and 
last level cache (LLC) to improve I/O 
performance. 

Figure 4 illustrates the organization of the 
DMA cache scheme. In this scheme, DMA 
cache is a dedicated cache placed at the same 
level of the processor’s last level cache (LLC) 
in memory hierarchy. A data path exists 
between the processor cache and the DMA 
cache for data exchange and coherence 
maintaining. In this paper, we mainly 
investigate the DMA cache system in a 
uniprocessor platform. 

4.2 Design Issues 

There are several important design issues. 
Data Coherency: Usually, adding a new 

cache would raise data coherency problem. In 
DMA cache scheme, we solve this problem 
by the following method. In DMA cache 

scheme, both processor cache and DMA 
cache will be accessed upon each memory 
reference (could be issued by CPU or DMA 
engine). In the DMA Cache scheme, the state 
diagram of processor cache is nearly same as 
that of a typical uniprocessor which can 
handle I/O data coherency. The state diagram 
for DMA cache is similar to that of processor 
cache except driving sources. In such way, 
the DMA scheme is able to ensure that data 
would never exist in both caches at any time. 

Data Migration between Processor 
Cache and DMA Cache:  While a DMA 
memory read reference misses in DMA cache 
and hits in processor cache, the hit block will 
be migrated from processor cache to DMA 
cache. For a CPU memory read reference, the 
data migration direction is changed.  

Replace Policy and Write Policy: We use 
an LRU-like replacement policy in which the 
DMA cache blocks are selected for 
replacement in the following priority: 1) First, 
the invalidated blocks will be selected. 2) 
Second, the least used clean block will be 
selected. 3) Finally, the least used dirty block 
will be selected. In addition, the DMA cache 
adopts a write back and write allocate policy. 

Prefetching: In the direction of the “CPU 
write and DMA read” produce-consume 
relationship, where CPU produces I/O data 
into processor cache, the DMA Cache scheme 
cannot gain more benefits because the 
behavior of processor cache is unpredictable. 
In fact, DMA read has very regular access 
pattern, being linear within a DMA buffer. 
We find that even though the DMA cache 
adopts a sequential prefetching scheme [6] 
with a prefetching degree [6] of four cache 
blocks for DMA cache, it is able to 
significantly improve performance.  

Figure 4. The Organization of the DMA 
Cache Scheme 



4.3 Evaluations 

We have evaluated four schemes: (1) 
snooping-cache, (2) shared-cache, (3) DMA 
cache without prefetching and (4) DMA 
cache with prefetching. We have also 
evaluated various DMA caches with 
capacities of 256KB, 128KB, 64KB and 
32KB. Figure 5 illustrates the normalized 
speedup of various schemes (the baseline is 

total cycles of snoop cache scheme). We can 
find that the DMA cache scheme with the size 
of 256KB and prefetching outperforms all 
other schemes. The performance of file-copy 
benchmark is improved by 20.7% due to its 
large portion of DMA memory reference 
(31%). In case of TPC-H benchmark which 
has 20% DMA memory reference, its speedup 
is about 8.0%. Although SPECWeb2005 only 

Figure 5. Normalized Speedup 

Figure 6. Breakdown of Normalized Total Cycles



has about 1% DMA memory reference, its 
performance is improved by 6.5%. 

Figure 5 and Figure 6 illustrate the 
normalized speedup and the breakdown of 
normalized emulated cycles of shared cache 
and DMA caches with various configurations. 
From these two figures, we can see two 
interesting phenomena that: (1) the shared-
cache scheme decreases performance for all 
benchmarks, especially for file-copy (-6.3%) 
and TPC-H (-8.8%). (2) DMA caches with 
the size of less than 128KB (i.e., 64KB and 
32KB) exhibit even worse performance than 
the baseline (i.e., snooping-cache scheme) for 
file-copy and TPC-H benchmarks. 

We investigate these two phenomena and 
find out the same reason that they both have 
poor DMA write memory performance (See 
the portion of DMA Write Memory of Figure 
6). In snooping-cache scheme, all data is 
written into memory directly. In such 
situation, accessing DDR2 DRAM can 
achieve quite good performance due to few 
row buffer conflicts because the I/O data is 
written into a continuous address region. 

However, in shared-cache scheme, I/O data is 
injected into cache, incurring cache block 
replacement. Unfortunately, because the 
replaced dirty blocks are usually non-
continuous, DDR2 DRAM exhibit poor 
performance due to lots of row buffer 
conflicts.  

For those DMA caches with the size of less 
than 128KB (i.e., 64KB and 32KB), they also 
cause lots of row buffer conflicts in some 
benchmarks. Figure 7 depicts the cumulative 
distributions of the size of DMA requests for 
three benchmarks respectively. The average 
sizes of DMA write requests are about 110KB 
and 121KB for file-copy and TPC-H 
respectively. For SPECweb2005, the sizes of 
all DMA requests issued by NIC are smaller 
than 1.5KB because the maximum 
transmission unit (MTU) of Gigabit Ethernet 
frame is only 1518 bytes. The size of DMA 
requests issued by IDE controller for 
SPECweb2005 is also very small, an average 
of about 10KB. When DMA request size 
exceeds the size of the DMA cache, it will 
lead to frequent replacement for dirty blocks. 

Figure 7. Cumulative Distribution of DMA Request Size 



As mentioned before, those replaced dirty 
blocks are non-continuous, leading to poor 
DDR2 memory performance due to lots of 
row buffer conflicts. 

The phenomena of shared-cache scheme 
are difficult to be removed because shared-
cache scheme has to share all parts of 
processor’s cache, including cache policies. 
However, the DMA cache scheme is able to 
avoid the phenomena by increasing the size of 
DMA cache or adopting a write-through 
policy, i.e., writing I/O data into memory 
directly and holding a clean-copy data in 
DMA cache simultaneously. 

5. Related Work 

Some studies have focused on reducing the 
overhead of additional memory copy 
operations for I/O data transfer. The key idea 
of these proposals is adopting shared-cache 
for DMA engine and processor to exchange 
I/O data. Iyer [7] proposed a chipset cache 
scheme to improve performance of Web 
Servers. The chipset cache handles the entire 
processor’s last level cache misses as well as 
the DMA memory references. In fact, the 
chipset cache plays a role of last level cache 
shared by processor and DMA engine. 
Huggahalli et al [3] proposed a direct cache 
access (DCA) scheme that enables DMA 
engine and processor to exchange data within 
processor’s cache. Their study focuses on 
network traffics and shows that the DCA 
scheme has poor performance for applications 
that have intensive disk I/O traffics (e.g. 
TPC-C). Some studies proposed the cache 
injection techniques [8,9,10,11] which is 
using some new instructions and some 
modifications of processor cache for I/O 
devices to inject I/O data into processor cache 

directly. In fact, the cache injection 
techniques can also be classified into the 
shared-cache scheme.  

Although shared-cache scheme may be 
beneficial in reducing the overhead of 
additional memory copy operations, it can 
cause cache interferences between processor 
and DMA engine. Edgar et al [12] show that 
blind cache injection can be harmful to 
application performance. Our evaluations 
have shown that the interference can degrade 
I/O performance significantly when the size 
of I/O data increases from 1KB to over 
100KB. Like shared-cache scheme, the DMA 
cache is advantageous in reducing the 
overhead of unnecessary memory copy 
operations. Unlike shared-cache scheme, the 
DMA cache technique is able to avoid 
interferences between processor and DMA 
engine. Furthermore, the DMA cache only 
serves I/O data which has very regular 
reference pattern. Thus, more special 
optimization techniques can be exploited for 
the DMA cache.  

6. Future Work 

Since the essence of DMA mechanism has 
been revealed, there would several other 
alternatives to improve I/O performance, such 
as improving shared-cache scheme with the 
same effect as the DMA cache scheme. We 
have been working on the following things:   
•  Exploring the optimization space of 

DMA cache scheme to achieve more 
improvements, such as adopting write-
through policy.  

•  Evaluating the DMA Cache scheme 
under more complicated environments, 
such as multi-DMA channels and 
multicore platform. 



•  Designing and implementing a 
hardware/software cooperative approach 
to improve I/O performance by sharing 
last level cache. 
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