
Exploiting the Produce-Consume Relationship in DMA to Improve I/O
Performance

Dan Tang1,2, Yungang Bao1, Yunji Chen1, Weiwu Hu1, Mingyu Chen1

1 Institute of Computing Technology, Chinese Academy of Sciences
2 Graduate School of Chinese Academy of Sciences

{tangdan, cyj, hww}@ict.ac.cn {baoyg, cmy}@ncic.ac.cn

Abstract

In this paper, we investigate the nature of
DMA mechanism wherein there is an explicit
product-consume relationship. Base on this
observation we propose a DMA Cache
technique to improve performance of DMA
operations. To evaluate this technique, we
adopt a hardware-based memory trace
collection tool and an FPGA-based trace-
drive emulation system. Experimental results
show that DMA Cache can improve I/O
performance significantly.

1. Introduction

I/O accesses are essential on modern
computer systems, whenever we load binary
files from disks to memory or download files
from network. Moreover, many commercial
workloads (e.g., database server, web server
etc.) are I/O intensive. I/O buses and I/O
devices technologies have been improved
dramatically in the past decade. New I/O bus
technologies, such as PCI-Express 2.0,
AMD’s HyperTransport 3.0 and Intel’s CSI
(QPI), can provide bandwidths of over
20GB/s which are very close to that of a
DDR2/3 DRAM memory system. The I/O
devices performance also increases
significantly so that a RAID system is able to

provide a bandwidth of 600MB/s easily and
the 10Gb Ethernet can offer a bandwidth of
1.25GB/s.

DMA technique is used to release
processor from I/O process, which provides
special channels for CPU and I/O devices to
exchange I/O data. However, as the
throughput of the I/O devices grows rapidly,
memory data moving operations have become
critical for DMA scheme, which becomes a
performance bottleneck for I/O operations.
We investigate the nature of DMA and find
that 1) there is an explicit producer-consumer
relationship between CPU and DMA and 2)
memory only play a role of transient place for
I/O data. If we replace memory with a high
speed buffer (e.g. a cache) as this transient
place, the I/O performance may be improved
significantly.

We propose a DMA cache technique which
is adopting a dedicated cache (called DMA
Cache) for buffering I/O data. This technique
enables CPU and I/O device to exchange data
between last level cache (LLC) and a DMA
cache. The DMA cache technique can
significantly reduce unnecessary memory
data moving operations and largely improve
I/O performance.

To evaluate the DMA Cache technique, we
enhance a hardware-based memory trace

collection tool, i.e. HMTT [1], to be able to
distinguish CPU memory references and
DMA memory references. With such an
approach, we collect all CPU and DMA
memory reference traces of various real
applications (file copy, TPC-H and
SPECweb2005) on a real machine. We adopt
a RTL-based trace-driven emulation system
mainly consisting of commercial components,
e.g., L2 Cache, memory controller and
DIMM model, to evaluate the proposal. We
also use the FPGA-based RTL emulation
accelerating system which is the Xtreme
system [2] from Cadence to accelerate
emulation.

Experimental results show that the DMA
cache technique improves performance by an
average of 11.8% for a 256KB DMA cache
with sequential prefetching for all
benchmarks (up to 20.7% for a file-copy
application) when using snooping-cache as
baseline, and it performs best among all
schemes we have evaluated (e.g., snooping-
cache scheme, shared-cache scheme).

The rest of the paper is organized as
follows. In Section 2, we introduce the DMA
mechanism and reconsider the role of
memory in DMA process. Section 3 describes
our efforts in promoting research
methodology. Section 4 introduces our recent
research results that we propose and evaluate
a DMA Cache scheme for improving I/O
performance. In Section 5, we discuss related
work. We present future work in Section 6.

2. The Nature of DMA Mechanism

Figure 1 depicts the interaction of
processor, memory and I/O device in DMA
receiving mechanism. As shown in the figure,
the interaction requires three data structures,

i.e. DMA buffer, descriptor and APP buffer1.
Usually DMA buffers’ start address can vary
in physical address space and their size also
varies. DMA descriptors are used to manage
these discrete DMA buffers. Each descriptor
includes a pointer of DMA buffer’s start
address and a variable of DMA buffer’s size.
Each descriptor also includes some variables
of status information such as DMA buffer’s
owner (could be processor or DMA engine).

According to the DMA receiving
mechanisms, we can find that the essence of
DMA scheme is that processor and I/O device
have an explicit producer-consumer
relationship. For instance, DMA engine is
producer and processor is consumer in DMA
receiving mechanism. Moreover, usually once
data is produced, it will be used once and
only once in most cases. This essence also
exists in the DMA transmitting mechanism.

Furthermore, we can find that memory only
plays a role of transient place for storing I/O
data transferred between processor and I/O
device. In DMA receiving processes, the data
source is DMA engine (or I/O device) which
writes source data (I/O data) to DMA buffer

1 It should be noted that the “APP buffer” could be a buffer
in kernel space or user space.

Figure 1. DMA Receiving Mechanism

(see Step 5 in Figure 1). To provide I/O data
for user applications, device driver performs
an additional memory copy operation which
copies I/O data from DMA buffer to the
eventual destination – APP buffer2 (see Step
8 in Figure 1). Once I/O data is copied to the
eventual destination (APP buffer), DMA
buffer is freed. Device driver will allocate a
new DMA buffer for a new DMA receiving
operation. However, the start address of the
new DMA buffer is usually different from the
previous freed one.

Based on the findings, we can conclude
that the I/O performance should be improved
significantly if the overhead of these
additional memory-copy operations can be
reduced. However, only a few people (e.g.,
DCA proposed by Huggahalli, Iyer and
Tetrick [3]) realize the nature of DMA
mechanism and, there are a large space for
leveraging the nature of DMA mechanism for
improving I/O performance while design
computer architectures.

Next, we will introduce our research
approaches in section 3 and some particular

2 I/O data may not be copied from DMA buffer to APP
buffer. For example, the copy operations are not performed
upon invalid or duplicate network packets.

results on I/O subsystem section 4.

3. Research Methodology

Usually we use trace-driven simulation (or
emulation) method for memory system and
I/O system research. However, there are two
substantial obstacles of effective simulation
and emulation, i.e., 1) it is hard to collect an
ideal memory trace which should be complete,
detailed, undistorted and so forth [4]; 2)
software simulation usually has speed and
scalability limitations.

To overcome the two obstacles, we adopt a
hardware snooping tool to collect all memory
reference traces and an FPGA-based trace-
driven emulation system to evaluate our
proposals.

3.1 HMTT: A Hyper Memory Trace Tool

HMTT [1] is a platform independent full
system memory trace monitoring system. The
system adopts a DIMM-snooping mechanism,
which uses hardware boards plugged in
DIMM slots to track virtual memory

Figure 3. The Memory Trace Collection
Framework

Figure 2. The HMTT Tool

reference trace of full systems (including OS,
VMMs, libraries, and applications). Figure 2
shows a photo of HMTT in working state.
Furthermore, HMTT provides APIs for user
to inject user-defined tags into memory trace.

To distinguish a memory reference issued
by DMA engine or processor, we have
inserted HMTT’s APIs into the device drivers
of hard disk controller and network interface
card (NIC) on Linux platform. Figure 3
illustrates the memory trace collection
framework. When the modified drivers
allocate and release DMA buffers (see details
in section 2), they record start address, size
and owner information of a DMA buffer.
Meanwhile, they send synchronization tags to
the HMTT system. When the HMTT system
receives synchronization tags, it injects tags
(DMA_BEGIN_TAG or DMA_END_TAG)
into physical memory trace to indicate that
those memory references between the two
tags and within the DMA buffer’s address
region are DMA memory references initiated
by DMA engine. The status information of
DMA requests, such as start address, size and
owner, is stored in a reserved physical
memory and is dumped into a file after
memory trace collection is completed. Thus,
there is no interference of additional I/O
access. We can differentiate DMA memory
reference from processor memory reference
by merging physical memory trace and status
information of DMA requests.

We run all the benchmarks on a server
machine. The server is an AMD Opteron
2.2GHz processor and 2GB dual-channel
DDR memory machine. We use HMTT to
collect memory reference traces of three real
applications (file-copy, TPC-H, and
SPECweb2005).

3.2 FPGA-based Trace-driven Emulation
System

We adopt an FPGA platform to emulate
cache system. Our cycle-accurate
experimental system consists of a last level
cache and a DDR2 controller from the
Godson-2F processor, a DDR2 DIMM model
from Micron Technology [5]. The whole
cache emulation system is implemented in
synthesizable RTL code. We use an FPGA
based RTL emulation accelerator, the Xtreme
system [2] from Cadence, to accelerate this
system. A new design can be embedded into
the cache emulation system for evaluation.

A combination of the HMTT memory trace
collection tool and the trace-driven FPGA-
based cache emulation system has
significantly reduced our research periods.
For example, we can use HMTT to collect
memory traces with user-aware tags from
various real machines without any slowdowns,
analyze memory traces to gain some
observations and insights and evaluate new
ideas in the FPGA-based emulation accelerate
system. In such a method, the research period
can be reduced to only a few hours from trace
collection, off-line analysis to emulation and
result data collection.

4. The DMA Cache for Improving I/O
Performance

In this section, we demonstrate our recent
research results of a DMA Cache technique
for improving I/O performance.

4.1 DMA Cache Scheme

The DMA cache is a dedicated cache for
buffering I/O data. Like shared-cache scheme
(i.e., DCA [3]), it is advantageous in reducing

the overhead of unnecessary memory copy
operations. Unlike shared-cache scheme, the
DMA cache technique is able to avoid
interferences between processor and DMA
engine. Furthermore, the DMA cache is
beneficial from adopting straightforward
prefetching technique because it only serves
I/O data which has very regular reference
pattern. Thus, CPU and I/O device can
exchange data between the DMA cache and
last level cache (LLC) to improve I/O
performance.

Figure 4 illustrates the organization of the
DMA cache scheme. In this scheme, DMA
cache is a dedicated cache placed at the same
level of the processor’s last level cache (LLC)
in memory hierarchy. A data path exists
between the processor cache and the DMA
cache for data exchange and coherence
maintaining. In this paper, we mainly
investigate the DMA cache system in a
uniprocessor platform.

4.2 Design Issues

There are several important design issues.
Data Coherency: Usually, adding a new

cache would raise data coherency problem. In
DMA cache scheme, we solve this problem
by the following method. In DMA cache

scheme, both processor cache and DMA
cache will be accessed upon each memory
reference (could be issued by CPU or DMA
engine). In the DMA Cache scheme, the state
diagram of processor cache is nearly same as
that of a typical uniprocessor which can
handle I/O data coherency. The state diagram
for DMA cache is similar to that of processor
cache except driving sources. In such way,
the DMA scheme is able to ensure that data
would never exist in both caches at any time.

Data Migration between Processor
Cache and DMA Cache: While a DMA
memory read reference misses in DMA cache
and hits in processor cache, the hit block will
be migrated from processor cache to DMA
cache. For a CPU memory read reference, the
data migration direction is changed.

Replace Policy and Write Policy: We use
an LRU-like replacement policy in which the
DMA cache blocks are selected for
replacement in the following priority: 1) First,
the invalidated blocks will be selected. 2)
Second, the least used clean block will be
selected. 3) Finally, the least used dirty block
will be selected. In addition, the DMA cache
adopts a write back and write allocate policy.

Prefetching: In the direction of the “CPU
write and DMA read” produce-consume
relationship, where CPU produces I/O data
into processor cache, the DMA Cache scheme
cannot gain more benefits because the
behavior of processor cache is unpredictable.
In fact, DMA read has very regular access
pattern, being linear within a DMA buffer.
We find that even though the DMA cache
adopts a sequential prefetching scheme [6]
with a prefetching degree [6] of four cache
blocks for DMA cache, it is able to
significantly improve performance.

Figure 4. The Organization of the DMA
Cache Scheme

4.3 Evaluations

We have evaluated four schemes: (1)
snooping-cache, (2) shared-cache, (3) DMA
cache without prefetching and (4) DMA
cache with prefetching. We have also
evaluated various DMA caches with
capacities of 256KB, 128KB, 64KB and
32KB. Figure 5 illustrates the normalized
speedup of various schemes (the baseline is

total cycles of snoop cache scheme). We can
find that the DMA cache scheme with the size
of 256KB and prefetching outperforms all
other schemes. The performance of file-copy
benchmark is improved by 20.7% due to its
large portion of DMA memory reference
(31%). In case of TPC-H benchmark which
has 20% DMA memory reference, its speedup
is about 8.0%. Although SPECWeb2005 only

Figure 5. Normalized Speedup

Figure 6. Breakdown of Normalized Total Cycles

has about 1% DMA memory reference, its
performance is improved by 6.5%.

Figure 5 and Figure 6 illustrate the
normalized speedup and the breakdown of
normalized emulated cycles of shared cache
and DMA caches with various configurations.
From these two figures, we can see two
interesting phenomena that: (1) the shared-
cache scheme decreases performance for all
benchmarks, especially for file-copy (-6.3%)
and TPC-H (-8.8%). (2) DMA caches with
the size of less than 128KB (i.e., 64KB and
32KB) exhibit even worse performance than
the baseline (i.e., snooping-cache scheme) for
file-copy and TPC-H benchmarks.

We investigate these two phenomena and
find out the same reason that they both have
poor DMA write memory performance (See
the portion of DMA Write Memory of Figure
6). In snooping-cache scheme, all data is
written into memory directly. In such
situation, accessing DDR2 DRAM can
achieve quite good performance due to few
row buffer conflicts because the I/O data is
written into a continuous address region.

However, in shared-cache scheme, I/O data is
injected into cache, incurring cache block
replacement. Unfortunately, because the
replaced dirty blocks are usually non-
continuous, DDR2 DRAM exhibit poor
performance due to lots of row buffer
conflicts.

For those DMA caches with the size of less
than 128KB (i.e., 64KB and 32KB), they also
cause lots of row buffer conflicts in some
benchmarks. Figure 7 depicts the cumulative
distributions of the size of DMA requests for
three benchmarks respectively. The average
sizes of DMA write requests are about 110KB
and 121KB for file-copy and TPC-H
respectively. For SPECweb2005, the sizes of
all DMA requests issued by NIC are smaller
than 1.5KB because the maximum
transmission unit (MTU) of Gigabit Ethernet
frame is only 1518 bytes. The size of DMA
requests issued by IDE controller for
SPECweb2005 is also very small, an average
of about 10KB. When DMA request size
exceeds the size of the DMA cache, it will
lead to frequent replacement for dirty blocks.

Figure 7. Cumulative Distribution of DMA Request Size

As mentioned before, those replaced dirty
blocks are non-continuous, leading to poor
DDR2 memory performance due to lots of
row buffer conflicts.

The phenomena of shared-cache scheme
are difficult to be removed because shared-
cache scheme has to share all parts of
processor’s cache, including cache policies.
However, the DMA cache scheme is able to
avoid the phenomena by increasing the size of
DMA cache or adopting a write-through
policy, i.e., writing I/O data into memory
directly and holding a clean-copy data in
DMA cache simultaneously.

5. Related Work

Some studies have focused on reducing the
overhead of additional memory copy
operations for I/O data transfer. The key idea
of these proposals is adopting shared-cache
for DMA engine and processor to exchange
I/O data. Iyer [7] proposed a chipset cache
scheme to improve performance of Web
Servers. The chipset cache handles the entire
processor’s last level cache misses as well as
the DMA memory references. In fact, the
chipset cache plays a role of last level cache
shared by processor and DMA engine.
Huggahalli et al [3] proposed a direct cache
access (DCA) scheme that enables DMA
engine and processor to exchange data within
processor’s cache. Their study focuses on
network traffics and shows that the DCA
scheme has poor performance for applications
that have intensive disk I/O traffics (e.g.
TPC-C). Some studies proposed the cache
injection techniques [8,9,10,11] which is
using some new instructions and some
modifications of processor cache for I/O
devices to inject I/O data into processor cache

directly. In fact, the cache injection
techniques can also be classified into the
shared-cache scheme.

Although shared-cache scheme may be
beneficial in reducing the overhead of
additional memory copy operations, it can
cause cache interferences between processor
and DMA engine. Edgar et al [12] show that
blind cache injection can be harmful to
application performance. Our evaluations
have shown that the interference can degrade
I/O performance significantly when the size
of I/O data increases from 1KB to over
100KB. Like shared-cache scheme, the DMA
cache is advantageous in reducing the
overhead of unnecessary memory copy
operations. Unlike shared-cache scheme, the
DMA cache technique is able to avoid
interferences between processor and DMA
engine. Furthermore, the DMA cache only
serves I/O data which has very regular
reference pattern. Thus, more special
optimization techniques can be exploited for
the DMA cache.

6. Future Work

Since the essence of DMA mechanism has
been revealed, there would several other
alternatives to improve I/O performance, such
as improving shared-cache scheme with the
same effect as the DMA cache scheme. We
have been working on the following things:
• Exploring the optimization space of

DMA cache scheme to achieve more
improvements, such as adopting write-
through policy.

• Evaluating the DMA Cache scheme
under more complicated environments,
such as multi-DMA channels and
multicore platform.

• Designing and implementing a
hardware/software cooperative approach
to improve I/O performance by sharing
last level cache.

 References

[1] Y. Bao, M. Chen, Y. Ruan, L. Liu, J. Fan,
Q. Yuan, B. Song, and J. Xu. HMTT: a
platform independent full-system
memory trace monitoring system. In
SIGMETRICS ’08: Proceedings of the
2008 ACM SIGMETRICS international
conference on Measurement and
modeling of computer systems, pages
229–240, New York, NY, USA, 2008.

[2] Xtreme system.
http://www.cadence.com/products/fv/xtre
me series/Pages/default.aspx.

[3] R. Huggahalli, R. Iyer, and S. Tetrick.
Direct cache access for high bandwidth
network I/O. In ISCA ’05: Proceedings of
the 32nd annual international symposium
on Computer Architecture, pages 50–59,
Washington, DC, USA, 2005.

[4] R. A.Uhilg, T. N. Mudge. Trace-driven
memory simulation: A survey. ACM
Computing Surveys, Jun., 1997.

[5] Micron technology inc.
http://www.micron.com/

[6] S. P. Vanderwiel and D. J. Lilja. Data
prefetch mechanisms. ACM Comput.
Surv., 32(2):174–199, 2000.

[7] R. Iyer. Performance implications of
chipset caches in web servers. In
ISPASS ’03: Proceedings of the 2003
IEEE International Symposium on
Performance Analysis of Systems and
Software, pages 176–185, Washington,
DC, USA, 2003.

[8] A. Milenkovic and V. Milutinovic. Cache
injection on bus based multiprocessors.
In SRDS ’98: Proceedings of the The
17th IEEE Symposium on Reliable
Distributed Systems, page 341,
Washington, DC, USA, 1998. IEEE
Computer Society.

[9] A. Milenkovic and V. M. Milutinovic.
Cache injection: A novel technique for
tolerating memory latency in bus-based
smps. In Euro-Par ’00: Proceedings from
the 6th International Euro-Par
Conference on Parallel Processing,
pages 558–566, London, UK, 2000.
Springer-Verlag.

[10] V. M. Milutinovic and G. A. Sheaffer.
The cache injection/cofetch architecture:
initial performance evaluation. In
MASCOTS ’97: Proceedings of the Fifth
International Symposium on Modeling,
Analysis, and Simulation of Computer
and Telecommunication Systems, pages
63–64, Haifa, 1997. IEEE Computer
Society.

[11] R. R. P. Bohrer and H. Shafi. Method and
apparatus for accelerating input/output
processing using cache injections. In US
Patent No. US 6,711,650 B1, 2004.

[12] E. A. Leon, K. B. Ferreira, and A. B.
Maccabe. Reducing the impact of the
memorywall for I/O using cache injection.
In HOTI ’07: Proceedings of the 15th
Annual IEEE Symposium on High-
Performance Interconnects, pages 143–
150, Washington, DC, USA, 2007. IEEE
Computer Society.

