

Copyright is held by the author/owner(s).
ICS’11, May 31-June 4, 2011, Tucson, Arizona, USA.
ACM 978-1-4503-0102-2/11/05.

Poster: Revisiting Virtual Channel Memory for Performance
and Fairness on Multi-core Architecture

Licheng Chen1,2, Yongbing Huang1,2, Yungang Bao1, Onur Mutlu3, Guangming Tan1, Mingyu Chen1

1Key Laboratory of Computer System & Architecture, Institute of Computing Technology,
Chinese Academy of Sciences

2Graduate School of Chinese Academy of Sciences
3 Carnegie Mellon University

{chenlicheng, baoyg, cmy}@ict.ac.cn {huangyongbing, tgm}@ncic.ac.cn onur@cmu.edu

Categories and Subject Descriptors: B.3.2, shared mem-
ory; B.3.1, dynamic memory (DRAM)
General Terms: Experimentation, Measurement, Performance

1. Introduction

In modern multi-core chip architecture, the DRAM system is shared
by more and more cores and high bandwidth I/O devices. This trend
raises the memory contention problem and the memory QoS problem.
Meanwhile, we find that multicore architecture also brings a large
amount of unexploited memory-level parallelism (MLP). In order to
exploit the MLP, we revisit the obsolete Virtual Channel Memory
(VCM) technology [3]. The experimental results show that VCM is a
good alternative to traditional DRAM chip on multicore architecture
because it can not only improve performance but also reduce unfair-
ness. Thus, we suggest memory chip vendors reconsider the VCM
technology for multicore architecture.

2. Implementing VCM on a multi-core architecture

Figure 1 illustrates VCM’s conceptual organization. Two commands,
Prefetch and Restore, are introduced to transfer data between row
buffers and channel buffers, each row buffer is divided into 4~16
segments which is the basic transfer data size. Foreground operations
and background operations can also be executed independently, so
VCM can exploit more MLP than traditional DRAM chip. Figure 2
illustrates the VCM memory controller, the memory request buffers
are distributed as a number of separated channel request buffers and
the physical memory address is translated into VCM address in the
form of <bank, row, segment, column>. Based on this, we further
implement the state of the art scheduling algorithms on VCM, in-
cluding FR-FCFS [4], PARBS [2], and ATLAS [1].

3. Experimental Results

Figure 3 shows the normalized IPC (NIPC) speedups of memory
intensive applications running on a 16-core system with 8 memory
banks. On average, VCM with 32 1KB-channel buffers achieves
2.08X performance speedup against the baseline FR-FCFS system,
while eight 8KB-row buffers provide only 1.15X improvements.

Figure 4 shows the weighted speedup (system throughput) of het-
erogeneous memory intensive workloads on a 16-core system. For
VCM with FR-FCFS, it improves system throughput by 1.66X. Since
applying PAR-BS and ATLAS to VCM changes system throughput

slightly, by only 5.9% and 0.03% respectively. This means that VCM
is inherently able to eliminate unfairness and improve system
throughput.

From our perspective, we suggest memory chip vendors recon-
sider the VCM technology for multicore architecture.

References
[1] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A Scal-

able and High-Performance Scheduling Algorithm for Multiple Mem-
ory Controllers. in Proceedings of the 16th International Symposium on
High-Performance Computer Architecture (HPCA). 2010.

[2] O. Mutlu and T. Moscibroda, Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems,
in Proceedings of the 35th Annual International Symposium on Com-
puter Architecture, 2008.

[3] Nec, 64M-bit Virtual Channel SDRAM data sheet, 1998.

[4] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens.
Memory Access Scheduling. in Proceedings of the 27th annual interna-
tional symposium on Computer architecture. 2000.

Row Buffer

Bank 0

Row

C
o

lu
m

n

Virtual Channels

Memory Controller

WriteRead
Foreground
Operations

Row Buffer

Bank 7

Row

C
o

lu
m

n

Background
Operations RestorePrefetch

One Segment:
1/ n Row

...

Core 0
 Memory Requests

Core C-1
 Memory Requests

...

Figure 1. Organization of
VCM

Bank
Scheduler

Crossbar

Core 0
Requests

Core C-1
Requests…

VC 0
Request
Buffer

VC V-1
Request
Buffer

Recycle
Request
Buffer

VC 0
Scheduler

VC V-1
Scheduler

…
Per-Channel
Scheduler

DRAM Channel Scheduler

DRAM Address/Command Buses(off-chip)

…
Memory Request

Buffer

Figure 2. VCM Memory
Controller

Figure 3. Performance
improvements

0

0.5

1

1.5

2

2.5

3

16-Core

N
IP

C
 S

p
ee

d
u

p

1-Row

2-Row

4-Row

8-Row

16-Bank

32-Bank

32-VC

2-MC

4-MC
0
1
2

3
4
5
6

7
8

16-Core

W
.S

p
ee

d
u

p

B8_FRFCFS

B8_PARBS

B8_ATLAS

VC32_FRFCFS

VC32_PARBS

VC32_ATLAS

Figure 4. Weighted Speedup

379

