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Abstract—Memory profiling is the process of collecting memory 
address traces during the execution of a program, then analyzing 
and characterizing the memory behavior of the program offline. 
With the trend that there will be more and more cores integrated 
in a processor chip, the “Memory Wall” problem will become 
more serious in the chip multiprocessor (CMP) system. Thus 
accurate and effective memory profiling is becoming one of the 
keys to identify the source of memory system bottlenecks. A large 
body of work has been contributed to memory profiling, however, 
most adopts instrumentation, simulator which suffers heavy 
overhead, or hardware performance counter which is lack of 
detail trace information. Furthermore, correlating the raw 
memory address traces with object-relative information allows us 
to separate regular pattern for certain object from the irregular 
mixed, thus helps the optimization. In this paper, we propose a 
lightweight hybrid hardware/software approach for object-
relative memory profiling. We monitor physical memory 
addresses through hardware snooping with negligible overhead; 
meanwhile we dump Linux kernel page tables of processes, as 
well as object-relative memory allocation information. Our 
approach supports not only to collect applications’ full memory 
traces with detail object relative information, but also to identify 
hardware-generated memory accesses such as page memory 
walks due to TLB miss at object level. The experimental results 
on real system show that our approach is highly accurate (the 
largest error is 2.04%) and low overhead (the average overhead 
is 1.60%). Furthermore, we profile two multi-thread applications 
in detail, and successfully identity hot TLB-miss objects. With 
object-targeted optimization, we can improve applications’ 
performance by nearly 6.86%. 

Keywords- hybrid; object; memory profiling; page memory 
walks; full memory traces 

I.  INTRODUCTION 
Program profiling is an important technology for collecting 

a variety of information (such as control flow, memory access 
address) during the execution of applications, and it provides 
insight into the hotspot of resource usage and helps to identify 
performance bottlenecks. Thus, program profiling is widely 
used in guiding performance optimization, compilers 
optimization and system architecture design. With the trend 
that there will be more and more cores integrated in a processor 
chip, the memory system has been the main performance 
bottleneck in a chip multiprocessor (CMP) system (known as 
the “Memory Wall” problem), which is mainly due to two 
factors: high memory latency and relative lower available 
memory bandwidth for each core [28]. Accurate and effective 
memory profiling is one of the keys to identify the source of 

memory system bottlenecks in CMP systems, and it can be 
used to quantify locality [9][39], optimize prefetching [10], 
improve hardware cache partitioning performance [18], drive 
memory simulator, analyze data dependency , and optimize 
data layout [30] etc.  

Memory behavior profiling can be done through many 
different ways, including: compiler-driven, dynamic 
instrumentation, simulation, and hardware performance counter. 
Compiler-driven instruments code for collecting memory trace 
during the compile time, thus it is a relative lightweight way. 
But it needs to recompile and relink programs, which is 
impossible for applications without source code. Dynamic 
instrumentation adopts Just-In-Time (JIT) compile technology 
to instrument code at runtime, and it can collect memory traces 
with rich information. However its main drawback is heavy 
overhead, which makes it unsuitable for running applications 
and collecting full traces for a long time. As shown in Soft-
OLP [18], the overhead of object-level memory profiler with 
dynamic instrumentation (Pin) is nearly 30 to 80 times even 
with 10% sampling. Simulation is another common way for 
memory behavior profiling with rich information, however 
simulation has the accuracy problem, and the overhead of 
accurate simulation is significantly heavy. Hardware 
performance counter is a useful tool for measuring memory-
related events. But the performance counter can provide only 
some statistics information, rather than detailed memory traces. 

Table I summarizes these ways. It is noteworthy that all the 
above ways just collect the memory traces caused by explicit 
data accesses (or data cache misses), they are unable to 
distinguish implicit page memory walks (or page walks) 
which are the memory accesses for page tables due to TLB 
miss on real systems. Since the TLB miss can raise an impact 
on the overall system performance ranges from 5-14% for 
nominally sized applications [4], it has been becoming more 
and more important to profile the page memory walk behavior 
on real CMP system. Previous work often drove a TLB 
simulator with collected memory reference traces to study the 
behavior of TLB and tried to optimize TLB performance, 
however this simulation approach had the accuracy problem.  

Wu et al. [40] presented an object-relative translation and 
decomposition method for effective memory profiling. The raw 
memory address trace was translated into object-relative format: 
(instruction-id, group, object, offset, time-stamp). The object- 
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TABLE I. SUMMARY OF DIFFERENT MEMORY PROFILING APPROACHES  

 Accurate Detailed Low 
overhead 

Page 
walks+ 

Instrument √ √ × × 
Simulator * √ × × 

Performance 
Counter √ × √ * 

Compiler √ √ √ × 
Hybrid H/S √ √ √ √ 

Note: ×-No, *-Maybe 
+Here we mean monitor memory accesses for page tables (due to TLB miss) 
on the real system, rather than with a TLB simulator. Hybrid H/S represents 

the hybrid hardware/software approach we present in this paper 
 

relative memory profiling enables decomposition of a memory 
access stream to separate regular and interesting information 
form irregular memory accesses and to provide compiler with 
useful information for optimization. However, they adopted 
dynamic instrumentation (with pin tool) for memory profiling, 
which suffered heavy overhead, and their memory profiling can 
only collect explicit data memory accesses, without monitoring 
and identifying implicit page memory walks. 

In this paper, we present a lightweight hybrid 
hardware/software approach for object-relative memory 
profiling. Instead of using heavy-overhead dynamic 
instrumentation, we adopt a hardware which is based on 
memory bus snooping technology to monitor memory 
transaction signal and dump physical memory reference traces 
with negligible overhead. The hardware is able to monitor full-
system memory traces [3], including operating system, DMA 
[32], page memory walks, and data accesses etc. Meanwhile, 
we modify the Linux kernel to dump processes’ page tables, 
and propose a synchronization mechanism between the page 
table traces and the physical memory traces. To support the 
object-relative memory profiling, we further provide a software 
toolkit to monitor object allocation information during the 
execution of a program. With our hybrid hardware/software 
approach, we can get the memory requests for data accesses, as 
well as identify page memory walks at object level on real 
systems by outputting memory trace with abundant semantic 
information as following: 

 <paddr, r/w, time-stamp, pid, vaddr, object, page-walk> 

For each memory access trace, we can get rich information 
which is valuable for optimization, including: physical address 
(paddr), read or write (r/w), time stamp of the request (time-
stamp), the id of the process who sends the memory request 
(pid), virtual address (vaddr), object id (object), and whether it 
is a page memory walk (page-walk). 

In summary, we have made the following contributions in 
this paper: 

We propose a lightweight hybrid hardware/software 
approach for object-relative memory profiling with rich 
semantic information. We adopt a snooping-based 
hardware cooperative with lightweight kernel 
modification and a software toolkit to achieve this goal. 
The experimental results show that the approach is 
highly accurate and with low overhead. 

Besides the ordinary memory requests issued by data 
accesses, our approach can also capture and identify 
page memory walks at object level on real systems, 
which is valuable for locating TLB performance 
bottlenecks. To the best of our knowledge, this 
approach is the first to be able to distinguish page 
memory walks at object level on real systems. 

With our approach, we have performed the object-
relative memory profiling on two multi-thread 
applications on a real system in detail, and show that 
we can successfully identify the memory and TLB 
performance bottlenecks at object level. And with 
object-targeted optimization, we can improve their 
performance by nearly 6.86%. 

The rest of the paper is organized as follows. Section II 
gives a brief introduction to Object-Relative Memory Profiling, 
while Section III describes the implementation of our hybrid 
hardware/software approach in detail. Section IV presents the 
experimental results on a real system: it first discusses the 
validation to show its accuracy; and then it evaluates the 
overhead to show its effectiveness; at last, it gives two case 
studies. Section V presents an overview of related work, and 
Section VI gives a conclusion of the paper. 

II. OBJECT-RELATIVE MEMORY PROFILING 
An object is a group of data stored as a unit, for instance, an 

array with each element having the same type or a structure 
with elements might have different types. Thus for 
programmers, the object contains the high-level semantic 
information of data. Object-Relative Memory Profiling was 
first proposed by Wu et al. [40]. They converted the raw 
memory address into object-relative form which could be used 
to separate regular memory access pattern for each object from 
the mixed irregular memory traces. 

As illustrated in [40], figure 1 shows the conceptual object-
relative memory trace separation. The original memory traces 
are mixed with different processes, thus it might appear as 
irregular memory pattern. In the next blocks, the memory 
traces are separated by each process, it appears a little more 
regular, but still mixed with multiple objects. In the last blocks, 
the memory traces are further separated by objects, then the 
per-object traces might be quite regular. With the regular 
memory pattern for each object, many optimizations can be 
done at object-level, such as: guide prefetcher at object-level; 
optimize data-layout for different type of objects. 

 
Figure 1. The process of object relative memory profiling to identify regular 

memory access pattern at object level [40]. 

Mix Memory Traces

Per-Process Traces
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III. IMPLEMENTATION 

 
Figure 2. The framework of ORMBP. 

In this section, we first give a brief introduction to the 
framework of ORMBP (Object-Relative Memory Behavior 
Profiling), and then we introduce the detailed implementation 
of the main components in subsections. 

Figure 2 shows the framework of ORMBP. The ORMBP 
adopts a hybrid hardware/software approach and it mainly 
consists of three components. In terms of hardware, the HMTT 
[3] card monitors the memory access requests to the DRAM 
system and dumps all physical memory address traces. In terms 
of software, we modify the Linux kernel to dump page table 
traces, which will be used to reconstruct reverse page table 
(RPT). The virtual address of a memory trace could be 
extracted from the RPT with the physical address captured by 
HMTT. Additionally, we provide a software toolkit for 
dumping object-relative virtual address zone during the 
execution of the process. With this information we can identify 
each memory request trace belonging to which object, thus 
obtain the object-relative memory behavior of the process. 

A. HMTT 
HMTT [3] is a DDRx SDRAM compatible memory trace 

monitoring system, which is able to track full-system 
physical/virtual memory reference traces (including OS, 
VMMs, libraries, and applications). It acts as a DIMM adaptor, 
which is directly plugged into a DIMM slot of a motherboard 
and a DRAM DIMM is plugged onto the HMTT card. This 
allows HMTT to monitor memory transaction signals on the 
transfer wires, reconstruct memory references, and send the 
memory trace out to another receiver PC. Since the transfer 
wires are very short, very little electrical interference is 
introduced to the system. 

By now, the third version of the HMTT has been released1, 
which supports DDR3-800 UDIMM/RDIMM. It adopts a high 
speed PCIE1.0 cable to transfer memory traces out to a receiver 
PC, the transfer bandwidth can achieve up to 8Gbps. The 
physical memory trace has the following format: <seq_no, 
duration, r/w, paddr>. Where seq_no is the sequence number 
of the PCIE packets, which is used to check whether packets 
are losing during transferring; duration is the HMTT hardware 
clock cycles between this memory reference trace and the 
previous trace, the HMTT clock is fixed at 400MHZ, so we can 
get accurate issue-time for each memory trace; r/w is a bit 
indicating whether it is a read (when 1) or a write (when 0) 

                                                           
1 The homepage of HMTT is: http://asg.ict.ac.cn/hmtt/ 

memory request; paddr is the physical cache block address of 
the memory request. 

B. Dump Page Table Trace 

 
Figure 3. The splitting of the x86-64 linear address. 

Linux kernel has supported four-level radix tree page table 
structure since 2.6.11, they are Page Global Directory (PGD), 
Page Upper Directory (PUD), Page Middle Directory (PMD) 
and Page Table (PT) [6]. Thus a linear address is split into five 
parts. By now, in Intel x86-64 architecture, the ordinary page 
size is 4KB, and the linear address splitting is (9, 9, 9, 9, 12), as 
shown in figure 3.  

Each page directory entry contains the physical page frame 
number for the next lower-level page directory and each page 
table entry contains the physical page frame number for the 
data page (and some other page attributes). Thus the physical 
page frames in the system can be split into two categories: the 
data pages and the page table pages. The data page is used 
for real data storage of a process, and the page table page is 
used for page table storage of a process. When a last level 
cache (LLC) miss due to a load/store operation occurs, it will 
send a memory request to a data page (known as normal data 
access). And when a last level Translation Lookaside Buffer 
(TLB) miss occurs (assume it also miss in cache), it might need 
at most 4 memory requests for the page table pages (known as 
page memory walks) to get the physical page frame number for 
the request virtual address. When the HMTT monitors a 
memory access request that is for a page table page, it can 
distinguish that this memory request is a page memory walk 
due to TLB miss. And other requests for the data pages are 
identified as normal data access LLC miss. 

Figure 4 shows the overall structure of DPTC (Dump Page 
Table Component). We first modified Linux kernel to monitor 
each page table update operation and dump the page table info 
into the page table buffer through the interface provided by the 
Dump Module. The Dump Module is implemented as a kernel 
module which provides mainly two functionalities: (1) it 
provides the interface for the modified kernel to dump page 
table info into the page table buffer and meantime to send a 
synchronous memory access to HMTT card when a page table 
update happens (we will discuss the synchronization with 
HMTT later); (2) it provides the interface to the Control 
Component for controlling starting and stopping of dumping 
page table traces. The Control Component is a user level 
process which can control starting and stopping of dumping 
page table traces flexibly by sending commands to the Dump 
Module. With this control mechanism, we can just dump page  

 
Figure 4. The overall structure of DPTC. 

Dump 
Module

Modified 
Kernel

Control 
Component

Page Table 
Buffer

Dump 
Component

Start/
Stop

 

Reserved
(63-48)

PGD
(47-39)

PUD
(38-30)

PMD
(29-21)

PT
(20-12)

Page Offset
(11-0)  

CPU

DRAM

Memory Access

HMTT

Process

Modified 
Linux Kernel

Reconstructed 
Page Table

Dump Page 
Table 

Physical 
Address

Objects Virtual 
Address Zone

Virtual 
Address

Object-Relative 
Memory Behavior

Object

Dump

Synchronize

 

48



table traces for the region we are interested in and significantly 
reduce the amount of traces. The Dump Component is also a 
user level process to dump the page table traces from the page 
table buffer into a file periodically. By providing an 
independent process, the runtime overhead can be reduced 
greatly.  

To dump the page tables of processes, the kernel first goes 
through the whole original page table of each process (or just 
the processes we are interested in), and dump each page entry 
(including page directory entry and page table entry) to the 
Page Table Buffer. Since the page table would change 
dynamically during the lifetime of a process, for example 
allocate some new pages at some time and then free them later. 
In response, the kernel would set some new page table entries 
for the new-allocated pages and then clear them from the page 
table. Thus the kernel needs to monitor all the page table 
updates and dump each page table update to the buffer. This 
can be done by overwriting the page table update functions 
(native_set_pud, native_pud_clear etc.). For page directory 
updates, it only needs to dump the physical page frame number 
and the process id (pid); for page table entry updates, besides 
the above information, it also needs to dump the corresponding 
virtual address, which will be used to reconstruct the reverse 
page table (RPT). 

The reverse page table is reconstructed according to the 
page table traces dumped. Figure 5 shows the reconstructed 
reverse page table, it has N buckets, where N is the available 
physical page frame number in the system. Since a physical 
page frame might be shared by multiple processes (such as 
shared memory segments), each bucket is organized as a link 
list with each list entry containing the corresponding virtual 
address and the pid of each process. The reverse page table 
uses physical page frame number for indexing. Given a 
physical address captured by HMTT and a specified process id, 
one can extract the corresponding virtual address from the 
reverse page table in two steps: (1) calculate the physical page 
number from the physical address, use it as an index to get the 
bucket; (2) access each list entry of the bucket until finding the 
specified process id. To improve the searching performance in 
the reverse page table, we have implemented each bucket with 
an AVL tree (a self-balancing binary search tree) instead of a 
link list. 

 
Figure 5. The reconstructed reverse page table. 

C. Synchronizing the HMTT Traces with Kernel Page Table 
Traces 

 
Figure 6. Synchronization HMTT memory traces with page table traces 

during trace analyzing (paddr represents physical address and vaddr represents 
virtual address). 

Because HMTT has a fixed frequency clock and each 
memory trace has a duration field, it is appropriate to use this 
clock to synchronize the HMTT traces with kernel page table 
traces. At each page table update, the Dump Module will send 
an uncacheable memory access request to the HMTT, which 
we call a synchronous tag trace. We reserve some physical 
memory (nearly 32MB) for synchronous memory access, and 
then ioremap it into the kernel space to make it accessible with 
nocache flag set. This guarantees that the reserved memory 
space could only be accessed by the Dump Module for 
synchronous tag accesses and prevents interfering by others 
(such as kernel threads and other processes). 

Figure 6 shows the synchronization of HMTT memory 
traces with page table traces during trace analyzing. The 
HMTT memory traces contain both normal traces and 
synchronous tag traces. Each time, the analyzer gets the next 
trace form HMTT memory traces, it first needs to check 
whether it is a synchronous tag trace or not. If so the analyzer 
gets the next page table trace from the kernel page table traces 
and update the reconstructed reverse page table (i.e, set an 
entry or clear an entry), this makes the reverse page table keep 
in correct state. If not, it is just a normal memory trace, the 
analyzer will use the physical address of the trace to extract (or 
query) the corresponding virtual address from the reverse page 
table. 

D. Dump Objects Virtual Address Zone 
In a program, there are two different types of objects: static 

objects whose space is automatically managed in the data 
segment, and dynamic objects whose space is manually 
allocated in the heap. For static objects, we can get the entry 
address and the size of them from the symbol table of the 
execution file (it is an ELF format file in Linux system). For 
dynamic objects, we develop a software toolkit which uses the 
LD_PRELOAD environment variable in Linux system to 
overlay the malloc() and free() functions to record the entry 
address and size of each dynamic object. The overlay operation 
might introduce some overhead to the application. We will 
evaluate the overhead in section IV. As like dumping page 
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table, we need to synchronize the object address zone 
information with the HMTT traces, this is also done by sending 
a synchronous tag trace at each interested object allocation, 
thus we can get the time-stamp information for each object 
allocation. 

Furthermore, if the source code of the program is provided, 
we can associate the object information with the main variables 
in the program, which is valuable for programmers to identify 
the performance bottleneck in variables and to optimize these 
variables (that is what we will do in case studies). Even without 
source code, it is easy to associate the dynamic object with 
calling address for further analysis by backtracking the call 
stack. 

It should be noted that in our approach the object is not 
limited to user space. In fact with careful annotation, memory 
access to kernel object can also be identified without difficulty. 
Page memory walks and DMA buffers [32] are such examples. 
Considering both kernel and user space memory behavior may 
help to profile those applications using kernel service 
intensively. 

The memory trace can be extended to the following format: 

<paddr, r/w, time-stamp, pid, vaddr, object, page-walk> 

The latter four fields are semantic information for the 
program. The Pid field is the id of the process issuing this 
memory request; vaddr field is the virtual address in the 
process virtual space for the memory request; object field 
indicates the object issuing the memory access request; page-
walk is a flag indicates whether the memory request is a page 
memory walk due to TLB miss or not. Thus with the object-
relative memory trace, we can: 

1) Separate the memory traces of a process into objects, 
and then analyze the memory access pattern for each 
object.  

2) Analyze the percentage of memory requests for each 
object, and find the hot objects which contribute the 
most of the memory requests. These provide valuable 
information for program optimization and compiler 
optimization. 

3) Analyze the percentage of page memory walks for 
each object, and find the hot objects for page memory 
walks. These can be used to optimize TLB 
performance. 

IV. EXPERIMENTS AND CASE STUDIES 

A. Experiment Setup 
We carried out our experiments with two 2.00GHz Intel 

Xeon E5504 processors. Each E5504 processor has 4 physical 
cores and we have disabled the Hyper-Thread. There are 3-
level caches in each processor, the L1 instruction and data 
caches are 32KB each and the L2 cache is 256KB, both the L1 
and L2 are private in each core. The L3 cache is 16-way 4MB 
and shared by all four cores in each processor. The cache line 
size is 64B for all caches in the hierarchy. There are 2-level 
private TLB in each core, the L1 DTLB has 64 entries for 4KB 
pages and 32 entries for 2MB pages (huge-page or huge-tlb), 

and the second-level TLB has 512 entries for 4KB pages. The 
total capacity of physical memory is 4GB with one dual-ranked 
DDR3-800 RDIMM, and the peak memory bandwidth is 
6.4GB/s. We reserved 0.25GB memory space for HMTT 
configuration space and page table buffer, thus the actual 
system available memory is 3.75GB. The operating system is 
64-bit CentOS5.3 for x86_64, the Linux kernel is 2.6.32.18 
which is modified for dumping page tables. The compiler is 
gcc 4.1.2. The C language library is glibc 2.5. 

As case studies, we choose a custom hybrid MPI/pthread 
implemented BFS of Graph500-1.2 benchmarks [1] and the 
canneal program from PARSEC-2.1 benchmarks [5]. The BFS 
default implements 64 times of Breadth-First Search from 
different randomly generated root vertexes on a Recursive 
MATrix (R-MAT) scale-free graph. Since we just perform the 
object-relative memory profiling for the BFS on one node, we 
run the BFS with one process and multiple threads. The 
canneal program we use is pthread implementations and with 
native input. Both the programs in our experiments are 
compiled with -O3 optimization. We run each program three 
times with different number of threads respectively. 

B. Validation 
We used a micro-benchmark to validate our hybrid 

hardware/software approach for object relative memory 
profiling. The benchmark allocates 5 arrays (they are a0, a1, a2, 
a3 and a4), the size of each array is 256MB. After initialize it 
with memset (to make sure that the physical pages are all 
allocated for them), we traverse each array with a step of 64 
bytes and different read/write rate access pattern: 

a0: all read accesses, forward 
a1: 3/4 read and 1/4 write accesses, forward 
a2: 2/4 read and 2/4 write accesses, forward 
a3: 1/4 read and 3/4 write accesses, backward 
a4: all write accesses, backward 

We set the access step as 64B which is the size of a cache 
line, to make sure that each access is not created in the same 
cache line as the previous access, thus each access would cause 
a cache miss and perform a memory request to the DRAM. 
Since the size of each array is 256MB, the number of memory 
requests for each array is 256MB/64B=4M=4,194,304. We 
respectively create a thread for each array traverse with pthread 
in Linux with different read/write rate access pattern, for 
example, for a1, we performed 3M read accesses to the first 3/4 
elements and then 1M write accesses to the last 1/4 elements. 
We ran the five threads simultaneously in one process. Further, 
to distinguish each array access pattern, we forward traversed 
on a0, a1, a2 and backward traversed on a3, a4. 

It is noteworthy that the L3 cache adopts write-back policy, 
so when a memory write access requests a line not in the L3 
cache, it first sends a read request to the memory to get the 
line back into the L3 cache, then writes data to the line, and 
writes back the data to the memory when the line is evicted out 
(this is done by sending a write request to the memory). Since 
we make each write access miss in the L3 cache, each write 
access will cause one read memory request and one write 
memory request. So for all a0~a4, each of the arrays will send 
4M read requests and different numbers of write requests.  
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TABLE II. THE OBJECT RELATIVE MEMORY PROFILING RESULTS OF THE 
MICRO-BENCHMARK  

Obj Read Write Rate Per Error 
a0 4,194,370 0 4:0 4:0 0% 
a1 4,194,310 1,048,576 4:1 4:1 0% 
a2 4,194,369 2,096,927 4:2 4:2 0% 
a3 4,194,303 3,087,379 4:2.94 4:3 2.04% 
a4 4,194,436 4,149,586 4:3.96 4:4 1.01% 

 

Table II shows the object relative memory profiling results 
of the micro-benchmark. The Read/Write column represents 
the number of read/write memory requests of each array. The 
Rate column represents the rate of read/write requests, the Per 
column represents the perfect rate of read/write requests, and 
the Error column shows the error of the object-relative 
memory profiling. We can see that, each array has nearly 4M 
read memory requests, which is the same with our analysis 
above. And from a0 to a4, each array performs nearly 0, 1M, 
2M, 3M, 4M write requests respectively, and they all conform 
with the access pattern. Finally, the largest error of the profiling 
is 2.04%. It shows our object-relative memory profiling has 
highly accuracy. The possible reasons causing the error include: 
invalid hardware prefetch and DRAM refresh etc. 

Figure 7 shows the virtual memory traces of the object a0 
and a4 of the micro-benchmark. We can see that the virtual 
memory traces of the object a0 increase and the virtual 
memory traces of the object a4 decrease, because we forward 
traverse on object a0 and backward traverse on object a4. This 
test shows that our approach can get accurate complete virtual 
memory traces for major objects of a program. 

We also performed object-relative memory profiling on 
serial version SpMV (Sparse Matrix-Vector multiplication), a 
program to multiply a sparse matrix (in CSR format) with a 
dense vector. The non-zero elements in the matrix are stored in 
array ax, and the vector is stored in array xhost. Figure 8 and 
figure 9 illustrate that with our object relative memory profiling, 
we can decompose the regular access pattern of ax object from 
the irregular access pattern of xhost object. The virtual memory 
address traces appear periodicity because we ran the multiply 
operation multiple times. This test illustrates that different 
objects may have different memory access patterns that can be 
investigated by our approach. 

 
Figure 7. The virtual memory traces of the object a0 and a4 in the micro-

benchmark. 

 
Figure 8. The regular access pattern of the ax object in SpMV. 

 
Figure 9. The irregular access pattern of the xhost object in SpMV. 

C. Overhead 
In this subsection, we measure the overhead of object-

relative memory profiling. We show that with our hybrid 
hardware/software approach, the overhead is quite lightweight. 
The overhead mainly includes two parts: dump page table in 
kernel and dump object-relative memory allocation information. 
In this subsection, we run all the programs with 8-thread to 
measure the overhead. 

Figure 10 shows the overhead of the object relative memory 
profiling, the original, +dump_pt and +dump_obj each 
respectively represents the original run time of the program, the 
run time of the program just with dumping page table in kernel, 
and the run time of the program with dumping page table and 
dumping object relative memory allocation information2. Since 
the main memory accesses of a multi-thread program are on a 
few large objects, we only need to monitor these objects 
relative memory allocation information. In our experiments, we 
choose to only monitor objects which are larger than 4KB in 
memory profiling. We can see that the average overhead of 
dumping page table in kernel is about 0.66% and the average 
overhead of dumping object relative memory allocation 
information is about 1.60%. The largest overhead of dumping 
object relative memory information is 5.00% for the dedup, this 
is because the number of object allocations of dedup is large. 
Actually there are total 1,240,324 dynamic memory allocations 
with size larger than 4KB on the heap during its execution.  

                                                           
2 Since there is negligible overhead of monitoring the physical 
memory traces with HMTT (hardware), we do not show it here 
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TABLE III. THE PERCENTAGE OF MEMORY REQUESTS FOR MAIN OBJECTS IN BFS AS THE NUMBER OF THREADS INCREASING 

Threads column_r column_w visited_r visited_w rowstarts_r rowstarts_w pred_r pred_w total 

1 65.71% 0.00% 5.21% 0.87% 7.79% 0.00% 8.43% 8.44% 96.46% 
2 64.96% 0.00% 5.36% 1.32% 7.72% 0.00% 8.35% 8.35% 96.06% 
4 55.19% 0.00% 16.01% 4.54% 6.57% 0.00% 7.10% 7.06% 96.46% 

32 55.13% 0.00% 17.11% 5.28% 6.58% 0.00% 7.10% 7.06% 98.24% 
128 54.22% 0.00% 18.38% 5.27% 6.47% 0.00% 6.98% 6.93% 98.26% 

(*_r represents read memory requests and *_w represents write memory requests) 
 

 
Figure 10. The overhead of the object relative memory profiling. 

As shown above, if the number of object memory 
allocations (>=4KB) is large, the overhead would increase. To 
further reduce overhead, we could set a larger threshold or we 
could choose to only monitor the top 10% largest objects of 
some complex programs. 

Dumping page table and object memory allocations 
information during the running of a program would introduce 
some cache/memory interference, but the interference is very 
low. Because in our experiments, we find that the size of page 
table traces and object memory allocation traces is quite small 
relative to the size of the normal memory access traces. For 
example, running 8-thread canneal with native input set, we 
get 200GB memory access traces with only 6.2MB page table 
traces and 26.8KB object allocation traces; running 8-thread 
streamcluster with native input set, we get 104GB memory 
access traces with 6.7MB page table traces and 27.4KB object 
allocation traces. 

D. Case Studies 
1 BFS in Graph500 

Graph 500 [1] is a set of large-scale benchmarks for data-
intensive applications, especially graph algorithms for 
analytics workloads. Breadth-First Search (BFS) is the most 
common and important operation in graph algorithms, which is 
the basis of many other graph operations. Graph 500 adopts 
synthetic kronecker graphs whose degrees follow power law 
distributions, which means that most of the vertices has a small 
degree (the number of edges associated with the vertex) and 
only a small portion of the vertices has huge degrees. Thus the 
graph is represented as compressed sparse row (CSR) format 
in order to save space. In a CSR format graph, the main data 
structures (objects) are column and rowstarts. The column 
object stores the adjacency array for all the vertices one by one 

and the rowstarts object stores the start index for each vertex’s 
adjacency array in the column object. In each BFS, the visited 
object is a bitmap for each vertex indicates whether the vertex 
has been visited or not, if visited, then there is no need to 
revisit the vertex’s adjacency array. The visited object 
improves the BFS performance significantly and needs to be 
accessed multiple times for each vertex. The oldq and newq 
objects are both simple FIFO queue structures, which store the 
vertices to be extended at this level and the next level. The 
pred object is used to store the parent vertex for each vertex 
during a BFS. The scale of the graph we choose is 23 and the 
edgefactor is 16 (default), which mean that the number of the 
vertices in the graph is 223 and the mean degree of each vertex 
is 16. The total size of the CSR graph is nearly 2GB. The 
visited object is 1MB, which is smaller than the LLC capacity 
(4MB).  

The BFS program mainly contains 4 steps: construct a 
graph, run BFS for each root (source vertex), validate, and 
compute the performance information. Only the running BFS 
step is counting for the performance, so we just perform the 
object relative memory profiling for this step. 

Table III shows the object relative memory profiling results 
of the BFS with the number of threads increasing. We can see 
that the column object contributes the largest portion of 
memory requests, it has a percentage of 65.71% for 1-thread 
and 54.22% for 128-thread, and it is read-only, the write 
memory requests is always 0%. The percentage of memory 
requests of the column object decreases with the number of 
threads increasing, but the percentage of visited object 
increases from 6.08% for 1-thread to 23.65% for 16-thread, we 
will explain the reason for it latter. The total column represents 
the percentage of the total memory requests of the main objects 
relative to the total memory requests of the whole BFS 
program. We can see that we successfully capture the main 
objects contributing to the memory requests, the percentage is 
larger than 96%. 

Figure 11 shows the normalized memory requests 
(including read and write) number of each main object in BFS 
against increasing the number of threads. We can see that 
except for the visited object, the numbers of memory requests 
of all the other main objects are nearly constant (the largest 
increasing rate is 0.59%). But for the visited object, the number 
of memory requests increases by 79.04% for 2-thread, 547.81% 
for 4-thread, and 662.27% for 128-thread (normalized to 1-
thread). That is because the visited object needs to be accessed 
every time when a vertex is extended, to check whether the 
vertex has been visited, so the number to be accessed during  
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Figure 11. The normalized memory requests of each main object in the BFS 

against increasing the number of threads, where the baseline is 1-thread. 

 
Figure 12. The normalized speedup of the performance and the memory 
bandwidth against the number of threads, where the baseline is 1-thread. 

each BFS depends on the degree of the vertex. Since the visited 
object (1MB) is less than the L3 cache (4MB), for 1-thread 
when the L3 cache contentionis minor, the visited object has 
quite a good cache locality (only 6.08%). But with the number 
of threads increasing, the access pattern of the visited object 
becomes more random (each thread needs to access it) and the 
shared L3 cache contention becomes more serious among 
these threads, which results in more L3 cache misses of the 
visited object during the BFS. For other objects, with the 
filtering effect of the visited flag, each element is actually 
accessed only once, so the access pattern of these objects are 
affected slightly by the increasing L3 cache contention as the 
number of threads increasing. 

Figure 12 shows the normalized speedup of the 
performance (in Traversed Edges Per Second, TEPS[1]) and 
the memory bandwidth against the number of threads. We can 
see that the performance and the memory bandwidth both 
increases as the number of threads varied from 1 to 256, and it 
has 3 stages with different characteristics. The first stage is 
from 1-thread to 4-thread, the normalized performance 
increases nearly at the same rate as the memory bandwidth, so 
the performance linearly benefits from the increasing of the 
memory bandwidth. The average normalized speedup is about 
1.2 as the number of threads doubled. The second stage is from 
4-thread to 64-thread, the average normalized speedup of the 
memory bandwidth is about 1.28 as the number of threads 
doubled, and the average speedup is about 1.23 of the 
performance. Thus in this stage, the performance does not fully 
benefit from the increasing memory bandwidth, that is because  

 
Figure 13. The normalized rate of the number of page memory walks due to 

TLB miss as the number of threads increasing, the baseline is 1-thread. 

 
Figure 14. The percentage of page memory walks for main objects in BFS as 

the number of threads increasing. 

the shared L3 cache contention increases as the number of 
threads increasing and causing more L3 cache misses. 
According to figure 11, the visited object suffers the most of 
the increasing L3 cache miss due to the more serious L3 cache 
contention, which could significantly affect the performance. 
The last stage is from 64-thread to 256-thread, the normalized 
speedup of the memory bandwidth is increasing very little 
(only 0.018), that is because BFS has an irregular memory 
access pattern and it has achieved the memory bandwidth 
limitation at this stage. For 256-thread in our experiments, the 
memory bandwidth achieved 4.66GB/s, which is 72.81% of 
the peak memory bandwidth (6.4GB/s). Because of the random 
distribution of nodes in the CSR graph, lock contention among 
threads and the synchronous overhead at each search level, this 
should be the maximum memory bandwidth it could achieve. 
In this stage, the performance also increases little (only 0.019) 
due to the little increasing memory bandwidth. 

And for more than 1024-thread (it is not shown in figure 
13), the performance will decrease due to the serious cache 
contention. So increasing the number of threads on one hand 
can improve memory bandwidth, but on the other hand will 
make the L3 cache contention more serious, especially for the 
visited object. There is a tradeoff to choose the proper number 
of threads. To reduce the cache contention on visited object, 
we can adopts page coloring technology [12][17] and protect 
the visited object with enough colors. 

As figure 13 shown, the number of page memory walks 
due to TLB miss also increases with the number of threads  
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Figure 15. The normalized performance speedup with huge pages (hugetlb) 

as the number of threads varied from 1 to 128. 

increasing, it increase 3.5% for 2-thread and 9.6% for 128-
thread. Figure 14 shows the percentage of page memory walks 
for each main object. We can see that the percentage for each 
main object nearly maintains constant among different number 
of threads. The visited, newq and oldq objects exhibit nearly no 
page memory walks (nearly 0%), that is because the visited 
object is quite small (1MB) and it can reside in the TLB; the 
newq and oldq objects are accessed with a nearly contiguous 
pattern which would cause little TLB miss. The other three 
objects contribute the most of the page memory walks; the 
average percentages are nearly 11.92% for rowstarts object, 
72.85% for column object, and 14.02% for pred object. The 
column object suffers the most of page memory walks, because 
the column object is the largest data structure in the BFS 
program (nearly 2GB), and it is accessed in a inter-vertex 
random and inner-vertex continuous manner. 

To reduce the number of page memory walks caused by the 
column object, we can put the column object into huge pages 
(2MB) to reduce the TLB miss 3 . Figure 15 shows the 
normalized performance speedup with the huge pages (or 
hugetlb). It can achieve up to 31.59% performance 
improvement for 1-thread, but much lower for multiple threads, 
8.18% for 128-thread. That is because with the number of 
threads increasing, the column object is accessed more 
randomly, which would result in more TLB contention. But on 
the other side, for BFS, increasing number of threads could 
achieve better load-balance, and decrease the level 
synchronous overhead among threads. Thus we can see the 
different normalized performance speedup under different 
number of threads with huge page. 

2 Canneal 
Canneal benchmark from PARSEC uses cache-aware 

simulated annealing (SA) to minimize the routing cost of a 
chip design [5]. In the experiments, we ran the pthreads 
parallelization version benchmark with native input, and 
performed the object-relative memory profiling in the Region-
Of-Interest (ROI). 

There are two main data objects which contribute most of 
the memory accesses. The _elements object stores the actual  

                                                           
3 Since the number of TLB entries is limited for huge pages (32 in 
Nehalem), we just put the column object in huge pages to avoid 
contention for it among multiple objects 

 
Figure 16. The number of memory requests for the objects in canneal as the 

number of threads varied from 1 to 8. 

Figure 17. The number of page memory walks for each object in canneal as 
the number of threads varied form one to eight. The total indicates the total 

number of the program. 

elements, each of which contains a name and all the fanin and 
fanout elements in the netlist. The _locations object stores the 
actual locations, and each location is a two-dimensional 
coordinates. Each time it randomly chooses two netlist 
elements and tries to swap them with a cost-related probability 
to minimize routing cost. Thus the _elements object needs to 
be updated (written) frequently (when a swap happens), and 
the _locations object only needs to be read to calculate the new 
cost. 

Figure 16 shows the number of memory requests for each 
main object as the number of threads is varied from one to 
eight. The _elements object has mostly memory write requests 
and the _locations object is read-only, there are no write 
requests on it. Further, we can see an interesting phenomenon 
that all the objects has nearly the same number of the memory 
read and write requests in different number of threads (1 to 8). 
And the average percentage of memory read/write requests for 
main objects are: 30.87% for _elements read requests, 27.92% 
for _elements write requests, 28.39% for _locations read 
requests, 0% for _locations write requests, and 12.82% for 
others memory requests.  

Figure 17 shows the number of page memory walks for 
each object as the number of threads increasing. The total 
number of the page memory walks for the program increases 
form 1.58E08 for 1-thread to 2.15E08 for 8-thread, meanwhile, 
the number of page memory walks for _elements object is 
increasing from 2.96E07 for 1-thread to 7.95E07, and the 
_locations object has almost no page memory walks. Thus in  
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Figure 18. The normalized performance speedup as the number of threads 

varied form one to eight. 

 
Figure 19. The normalized rate page memory walks and the reduced speedup 

as the number of thread varied from 1 to 8. 

canneal, the _elements objects is the main reason for the 
increasing of the page memory walks as the number of threads 
increasing. For 8-thread, the percentage of the page memory 
walks is up to 25.84% for _elements object. 

Figure 18 shows the normalized performance speedup as 
the number of threads increasing. The normalized speedup is 
1.95 for 2-thread, 3.80 for 4-thread, and 5.97 for 8-thread. Here 
we define reduced speedup as the rate of the peak speedup (the 
number of the threads) relative to the actual speedup, thus the 
higher the reduced speedup means the poorer scalability. For 
instance, for 2-thread, the reduced speedup is 2/1.95=1.03. 

Figure 19 shows the normalized rate of the number of page 
memory walks and the reduced speedup, we can see that the 
reduced speedup has a strong correlation with the number of 
page memory walks as the number of threads increasing. For 
8-thread, the normalized rate of the page walks is 1.27 and the 
reduced speedup is 1.34. According to figure 16, the number of 
the memory requests is almost no change, thus here we can 
conclude that the main reason for the reduced speedup is the 
increasing page walks. Furthermore according to figure 17, the 
_elements object is the real source. 

Thus we put the _elements object into huge pages to 
optimize its TLB performance. As figure 20 shown, with huge 
page, the normalized performance speedup is 1.07 for 1-thread, 
and 1.055 for 8-thread. The speedup is reduced due the more 
serious TLB contention as the number of threads increasing. 

Figure 20. The normalized performance speedup with huge pages as the 
number of threads varied from one to eight of the dedup program, the baseline 

is without huge pages. 

V. RELATED WORK  
There are several areas of effort related to memory trace 

profiling: binary rewriting, Instrumentation, Simulation, and 
hardware performance counter etc. 

Binary rewriting: The METRIC [20] system exploits 
dynamic binary rewriting for partial memory reference tracing. 
It also compresses the traces and employs offline cache 
simulation to find out the memory performance bottlenecks. 
Ben-Asher et al. [2] employ source code instrumentation with 
the LLVM compiler framework to collect memory traces, and 
the memory traces are used to guide automatic data structure 
partitioning to increase memory parallelism. Weinberg et al. 
[39] gather memory access characteristics using a binary 
rewriting tool and then use the traces to quantify the spatial 
locality and temporal locality for HPC applications. 

Performance Counter: Itzkowitz et al. [14] exploits 
UltraSPARC-III hardware counters for memory behavior 
profiling, however the hardware counters can just provide 
event count without the memory address and instruction. Thus 
they employ some extensions of the Sun ONE Studio 
compilers further more to provide per-instruction details of 
memory accesses, data aggregated and sorted by object 
structure types and elements. Buck et al. [8] presents a tool 
named Cache Scope on the Itanium 2 which exploits 
performance counter to sample cache miss address and then 
performs the mapping of addresses to objects for variables by 
using the debug information. Eranian [13] argues that the 
performance counters are the key hardware resource to locate 
and understand memory subsystem performance with low 
overhead. DProf [27] is a data-oriented profiler which can 
attribute cache misses to data types instead of code. DProf uses 
performance monitoring hardware (AMD instruction-based 
sampling hardware and x86 debug registers) to acquire 
memory address references, which is as the basis of 
categorizing all types of cache misses. Oprofile [16] is a 
system-wide profiler for Linux systems at low overhead, it 
samples hardware performance counters of the CPU to enable 
profiling of a wide variety of interesting statistics and reports 
the cost of each function. 

Instrumentation: Pin [19], DynamoRIO [7], Valgrind [24] 
and ATOM [31] are widely used binary instrumentation tools, 
and they are often used for memory profiling, the main 
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drawback of these popular instrumentation tools is heavy 
overhead. SIGMA [11] is a data collection framework that 
uses software instrumentation to gather memory addresses 
during the running of a process, it also provides a number of 
simulation and analysis tools to provide detailed information 
on variables and functions. To reduce instrumentation 
overhead, Ephemeral instrumentation [35] uses statistical 
sampling, shadow profiling [23] and SuperPin [36] execute 
instrumented code in parallel with a program’s execution to 
perform instrumentation sampling for multi-core system. 
Zhang and Gupta [41] exploit statically instrumenting to 
collect whole execution traces (including memory address 
traces) with an efficient compression mechanism. Weinberg et 
al. [38] use binary instrumentation to reduce memory tracing 
overheads without significant loss of accuracy with basic block 
sampling techniques. Roy et al. [29] present a hybrid static and 
dynamic binary rewriting instrumentation, the instrumented 
code is written into the PIC in active mode and then executed 
out of the PIC in passive mode to reduce overhead. Marathe et 
al. [21] present two hybrid hardware performance counters 
with software instrumentation techniques to determine cache 
coherence bottlenecks in shared-memory applications.  

Simulation: MemSpy [22] is a tool for locating memory 
system bottlenecks with detailed statistics on low-level 
memory system events, which uses a software memory 
simulation in monitoring the memory system behavior of 
programs on both data- and code-oriented information. 
Weidendorfer et al.[37] use runtime instrumentation and cache 
simulation to analyze memory access behavior. SIMT [33] is 
an execution-driven simulator focus on the memory 
performance and contains mainly facilities for simulating the 
memory system. 

Torrellas et al. [34] present a similar hybrid 
hardware/software approach for characterizing cache 
performance of multiprocessor OS. However their hardware 
monitor relied on MIPS buses which were proprietary and the 
software implementations were totally different from ours. 
Actually, our work is more portable than their approach which 
depends on MIPS’ architecture. For example, their approach 
leveraged MIPS’ software-managed TLB to track physical-
virtual address mapping. But this approach is not suited for 
contemporary prevalent x86 platforms which use page walks 
to refill TLB. Therefore, our Linux-based software adopts 
monitoring page-faults to track physical-virtual address 
mapping. 

Wu et al. [40] present an object-relative translation for 
effective memory profiling instead of raw memory addresses, 
which enables decomposition of a memory access stream to 
separate regular and interesting information from the irregular. 
However in their work, the raw memory profiling is 
implemented by instrumentation and it will suffer heavy 
overhead. Our hybrid hardware/software approach can 
significantly reduce the memory profiling overhead and get 
object-relative information for each memory trace. 

Actually, detailed object-level memory profiling is 
valuable for performance optimization, such as it can be used 
to optimize object-level cache partition through well known 
page coloring technology in Soft-OLP [18]. However, since 

they adopted dynamic instrumentation (with Pin) for memory 
profiler, the overhead was heavy: the slowdown was 50 to 80 
times even with 10% sampling. With our hybrid 
hardware/software memory profiler, we could also get full 
detailed and accurate shared cache misses on a set of objects 
for a given cache size directly without cache model estimation 
[18], and the overhead is lightweight (no more than 6%). 

VI. CONCLUSIONS 
In this paper, we have proposed a hybrid 

hardware/software approach for object relative memory 
profiling, which is able to not only profile the object level 
memory traces of data access, but also identify the page 
memory walks due to TLB miss at object level. It adopts 
hardware snooping technology, modifies the kernel to support 
dump page table, and dumps object virtual address range 
during the running of a program. We present some case studies 
to show that with our approach, we can effectively identify the 
memory and TLB performance at object level, which is 
valuable for optimization. 
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