
A Lightweight Hybrid Hardware/Software Approach
for Object-Relative Memory Profiling

Licheng Chen†‡, Zehan Cui†‡, Yungang Bao†, Mingyu Chen†, Yongbing Huang†‡, Guangming Tan†
†State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences

‡Graduate School of Chinese Academy of Sciences
{chenlicheng, cuizehan, baoyg, cmy, huangyongbing, tgm}@ict.ac.cn

Abstract—Memory profiling is the process of collecting memory
address traces during the execution of a program, then analyzing
and characterizing the memory behavior of the program offline.
With the trend that there will be more and more cores integrated
in a processor chip, the “Memory Wall” problem will become
more serious in the chip multiprocessor (CMP) system. Thus
accurate and effective memory profiling is becoming one of the
keys to identify the source of memory system bottlenecks. A large
body of work has been contributed to memory profiling, however,
most adopts instrumentation, simulator which suffers heavy
overhead, or hardware performance counter which is lack of
detail trace information. Furthermore, correlating the raw
memory address traces with object-relative information allows us
to separate regular pattern for certain object from the irregular
mixed, thus helps the optimization. In this paper, we propose a
lightweight hybrid hardware/software approach for object-
relative memory profiling. We monitor physical memory
addresses through hardware snooping with negligible overhead;
meanwhile we dump Linux kernel page tables of processes, as
well as object-relative memory allocation information. Our
approach supports not only to collect applications’ full memory
traces with detail object relative information, but also to identify
hardware-generated memory accesses such as page memory
walks due to TLB miss at object level. The experimental results
on real system show that our approach is highly accurate (the
largest error is 2.04%) and low overhead (the average overhead
is 1.60%). Furthermore, we profile two multi-thread applications
in detail, and successfully identity hot TLB-miss objects. With
object-targeted optimization, we can improve applications’
performance by nearly 6.86%.

Keywords- hybrid; object; memory profiling; page memory
walks; full memory traces

I. INTRODUCTION
Program profiling is an important technology for collecting

a variety of information (such as control flow, memory access
address) during the execution of applications, and it provides
insight into the hotspot of resource usage and helps to identify
performance bottlenecks. Thus, program profiling is widely
used in guiding performance optimization, compilers
optimization and system architecture design. With the trend
that there will be more and more cores integrated in a processor
chip, the memory system has been the main performance
bottleneck in a chip multiprocessor (CMP) system (known as
the “Memory Wall” problem), which is mainly due to two
factors: high memory latency and relative lower available
memory bandwidth for each core [28]. Accurate and effective
memory profiling is one of the keys to identify the source of

memory system bottlenecks in CMP systems, and it can be
used to quantify locality [9][39], optimize prefetching [10],
improve hardware cache partitioning performance [18], drive
memory simulator, analyze data dependency , and optimize
data layout [30] etc.

Memory behavior profiling can be done through many
different ways, including: compiler-driven, dynamic
instrumentation, simulation, and hardware performance counter.
Compiler-driven instruments code for collecting memory trace
during the compile time, thus it is a relative lightweight way.
But it needs to recompile and relink programs, which is
impossible for applications without source code. Dynamic
instrumentation adopts Just-In-Time (JIT) compile technology
to instrument code at runtime, and it can collect memory traces
with rich information. However its main drawback is heavy
overhead, which makes it unsuitable for running applications
and collecting full traces for a long time. As shown in Soft-
OLP [18], the overhead of object-level memory profiler with
dynamic instrumentation (Pin) is nearly 30 to 80 times even
with 10% sampling. Simulation is another common way for
memory behavior profiling with rich information, however
simulation has the accuracy problem, and the overhead of
accurate simulation is significantly heavy. Hardware
performance counter is a useful tool for measuring memory-
related events. But the performance counter can provide only
some statistics information, rather than detailed memory traces.

Table I summarizes these ways. It is noteworthy that all the
above ways just collect the memory traces caused by explicit
data accesses (or data cache misses), they are unable to
distinguish implicit page memory walks (or page walks)
which are the memory accesses for page tables due to TLB
miss on real systems. Since the TLB miss can raise an impact
on the overall system performance ranges from 5-14% for
nominally sized applications [4], it has been becoming more
and more important to profile the page memory walk behavior
on real CMP system. Previous work often drove a TLB
simulator with collected memory reference traces to study the
behavior of TLB and tried to optimize TLB performance,
however this simulation approach had the accuracy problem.

Wu et al. [40] presented an object-relative translation and
decomposition method for effective memory profiling. The raw
memory address trace was translated into object-relative format:
(instruction-id, group, object, offset, time-stamp). The object-

46978-1-4673-1146-5/12/$31.00 ©2012 IEEE

TABLE I. SUMMARY OF DIFFERENT MEMORY PROFILING APPROACHES

 Accurate Detailed Low
overhead

Page
walks+

Instrument √ √ × ×
Simulator * √ × ×

Performance
Counter √ × √ *

Compiler √ √ √ ×
Hybrid H/S √ √ √ √

Note: ×-No, *-Maybe
+Here we mean monitor memory accesses for page tables (due to TLB miss)
on the real system, rather than with a TLB simulator. Hybrid H/S represents

the hybrid hardware/software approach we present in this paper

relative memory profiling enables decomposition of a memory
access stream to separate regular and interesting information
form irregular memory accesses and to provide compiler with
useful information for optimization. However, they adopted
dynamic instrumentation (with pin tool) for memory profiling,
which suffered heavy overhead, and their memory profiling can
only collect explicit data memory accesses, without monitoring
and identifying implicit page memory walks.

In this paper, we present a lightweight hybrid
hardware/software approach for object-relative memory
profiling. Instead of using heavy-overhead dynamic
instrumentation, we adopt a hardware which is based on
memory bus snooping technology to monitor memory
transaction signal and dump physical memory reference traces
with negligible overhead. The hardware is able to monitor full-
system memory traces [3], including operating system, DMA
[32], page memory walks, and data accesses etc. Meanwhile,
we modify the Linux kernel to dump processes’ page tables,
and propose a synchronization mechanism between the page
table traces and the physical memory traces. To support the
object-relative memory profiling, we further provide a software
toolkit to monitor object allocation information during the
execution of a program. With our hybrid hardware/software
approach, we can get the memory requests for data accesses, as
well as identify page memory walks at object level on real
systems by outputting memory trace with abundant semantic
information as following:

 <paddr, r/w, time-stamp, pid, vaddr, object, page-walk>

For each memory access trace, we can get rich information
which is valuable for optimization, including: physical address
(paddr), read or write (r/w), time stamp of the request (time-
stamp), the id of the process who sends the memory request
(pid), virtual address (vaddr), object id (object), and whether it
is a page memory walk (page-walk).

In summary, we have made the following contributions in
this paper:

We propose a lightweight hybrid hardware/software
approach for object-relative memory profiling with rich
semantic information. We adopt a snooping-based
hardware cooperative with lightweight kernel
modification and a software toolkit to achieve this goal.
The experimental results show that the approach is
highly accurate and with low overhead.

Besides the ordinary memory requests issued by data
accesses, our approach can also capture and identify
page memory walks at object level on real systems,
which is valuable for locating TLB performance
bottlenecks. To the best of our knowledge, this
approach is the first to be able to distinguish page
memory walks at object level on real systems.

With our approach, we have performed the object-
relative memory profiling on two multi-thread
applications on a real system in detail, and show that
we can successfully identify the memory and TLB
performance bottlenecks at object level. And with
object-targeted optimization, we can improve their
performance by nearly 6.86%.

The rest of the paper is organized as follows. Section II
gives a brief introduction to Object-Relative Memory Profiling,
while Section III describes the implementation of our hybrid
hardware/software approach in detail. Section IV presents the
experimental results on a real system: it first discusses the
validation to show its accuracy; and then it evaluates the
overhead to show its effectiveness; at last, it gives two case
studies. Section V presents an overview of related work, and
Section VI gives a conclusion of the paper.

II. OBJECT-RELATIVE MEMORY PROFILING
An object is a group of data stored as a unit, for instance, an

array with each element having the same type or a structure
with elements might have different types. Thus for
programmers, the object contains the high-level semantic
information of data. Object-Relative Memory Profiling was
first proposed by Wu et al. [40]. They converted the raw
memory address into object-relative form which could be used
to separate regular memory access pattern for each object from
the mixed irregular memory traces.

As illustrated in [40], figure 1 shows the conceptual object-
relative memory trace separation. The original memory traces
are mixed with different processes, thus it might appear as
irregular memory pattern. In the next blocks, the memory
traces are separated by each process, it appears a little more
regular, but still mixed with multiple objects. In the last blocks,
the memory traces are further separated by objects, then the
per-object traces might be quite regular. With the regular
memory pattern for each object, many optimizations can be
done at object-level, such as: guide prefetcher at object-level;
optimize data-layout for different type of objects.

Figure 1. The process of object relative memory profiling to identify regular

memory access pattern at object level [40].

Mix Memory Traces

Per-Process Traces

Per-Object Traces

Irregular

Regular

47

III. IMPLEMENTATION

Figure 2. The framework of ORMBP.

In this section, we first give a brief introduction to the
framework of ORMBP (Object-Relative Memory Behavior
Profiling), and then we introduce the detailed implementation
of the main components in subsections.

Figure 2 shows the framework of ORMBP. The ORMBP
adopts a hybrid hardware/software approach and it mainly
consists of three components. In terms of hardware, the HMTT
[3] card monitors the memory access requests to the DRAM
system and dumps all physical memory address traces. In terms
of software, we modify the Linux kernel to dump page table
traces, which will be used to reconstruct reverse page table
(RPT). The virtual address of a memory trace could be
extracted from the RPT with the physical address captured by
HMTT. Additionally, we provide a software toolkit for
dumping object-relative virtual address zone during the
execution of the process. With this information we can identify
each memory request trace belonging to which object, thus
obtain the object-relative memory behavior of the process.

A. HMTT
HMTT [3] is a DDRx SDRAM compatible memory trace

monitoring system, which is able to track full-system
physical/virtual memory reference traces (including OS,
VMMs, libraries, and applications). It acts as a DIMM adaptor,
which is directly plugged into a DIMM slot of a motherboard
and a DRAM DIMM is plugged onto the HMTT card. This
allows HMTT to monitor memory transaction signals on the
transfer wires, reconstruct memory references, and send the
memory trace out to another receiver PC. Since the transfer
wires are very short, very little electrical interference is
introduced to the system.

By now, the third version of the HMTT has been released1,
which supports DDR3-800 UDIMM/RDIMM. It adopts a high
speed PCIE1.0 cable to transfer memory traces out to a receiver
PC, the transfer bandwidth can achieve up to 8Gbps. The
physical memory trace has the following format: <seq_no,
duration, r/w, paddr>. Where seq_no is the sequence number
of the PCIE packets, which is used to check whether packets
are losing during transferring; duration is the HMTT hardware
clock cycles between this memory reference trace and the
previous trace, the HMTT clock is fixed at 400MHZ, so we can
get accurate issue-time for each memory trace; r/w is a bit
indicating whether it is a read (when 1) or a write (when 0)

1 The homepage of HMTT is: http://asg.ict.ac.cn/hmtt/

memory request; paddr is the physical cache block address of
the memory request.

B. Dump Page Table Trace

Figure 3. The splitting of the x86-64 linear address.

Linux kernel has supported four-level radix tree page table
structure since 2.6.11, they are Page Global Directory (PGD),
Page Upper Directory (PUD), Page Middle Directory (PMD)
and Page Table (PT) [6]. Thus a linear address is split into five
parts. By now, in Intel x86-64 architecture, the ordinary page
size is 4KB, and the linear address splitting is (9, 9, 9, 9, 12), as
shown in figure 3.

Each page directory entry contains the physical page frame
number for the next lower-level page directory and each page
table entry contains the physical page frame number for the
data page (and some other page attributes). Thus the physical
page frames in the system can be split into two categories: the
data pages and the page table pages. The data page is used
for real data storage of a process, and the page table page is
used for page table storage of a process. When a last level
cache (LLC) miss due to a load/store operation occurs, it will
send a memory request to a data page (known as normal data
access). And when a last level Translation Lookaside Buffer
(TLB) miss occurs (assume it also miss in cache), it might need
at most 4 memory requests for the page table pages (known as
page memory walks) to get the physical page frame number for
the request virtual address. When the HMTT monitors a
memory access request that is for a page table page, it can
distinguish that this memory request is a page memory walk
due to TLB miss. And other requests for the data pages are
identified as normal data access LLC miss.

Figure 4 shows the overall structure of DPTC (Dump Page
Table Component). We first modified Linux kernel to monitor
each page table update operation and dump the page table info
into the page table buffer through the interface provided by the
Dump Module. The Dump Module is implemented as a kernel
module which provides mainly two functionalities: (1) it
provides the interface for the modified kernel to dump page
table info into the page table buffer and meantime to send a
synchronous memory access to HMTT card when a page table
update happens (we will discuss the synchronization with
HMTT later); (2) it provides the interface to the Control
Component for controlling starting and stopping of dumping
page table traces. The Control Component is a user level
process which can control starting and stopping of dumping
page table traces flexibly by sending commands to the Dump
Module. With this control mechanism, we can just dump page

Figure 4. The overall structure of DPTC.

Dump
Module

Modified
Kernel

Control
Component

Page Table
Buffer

Dump
Component

Start/
Stop

Reserved
(63-48)

PGD
(47-39)

PUD
(38-30)

PMD
(29-21)

PT
(20-12)

Page Offset
(11-0)

CPU

DRAM

Memory Access

HMTT

Process

Modified
Linux Kernel

Reconstructed
Page Table

Dump Page
Table

Physical
Address

Objects Virtual
Address Zone

Virtual
Address

Object-Relative
Memory Behavior

Object

Dump

Synchronize

48

table traces for the region we are interested in and significantly
reduce the amount of traces. The Dump Component is also a
user level process to dump the page table traces from the page
table buffer into a file periodically. By providing an
independent process, the runtime overhead can be reduced
greatly.

To dump the page tables of processes, the kernel first goes
through the whole original page table of each process (or just
the processes we are interested in), and dump each page entry
(including page directory entry and page table entry) to the
Page Table Buffer. Since the page table would change
dynamically during the lifetime of a process, for example
allocate some new pages at some time and then free them later.
In response, the kernel would set some new page table entries
for the new-allocated pages and then clear them from the page
table. Thus the kernel needs to monitor all the page table
updates and dump each page table update to the buffer. This
can be done by overwriting the page table update functions
(native_set_pud, native_pud_clear etc.). For page directory
updates, it only needs to dump the physical page frame number
and the process id (pid); for page table entry updates, besides
the above information, it also needs to dump the corresponding
virtual address, which will be used to reconstruct the reverse
page table (RPT).

The reverse page table is reconstructed according to the
page table traces dumped. Figure 5 shows the reconstructed
reverse page table, it has N buckets, where N is the available
physical page frame number in the system. Since a physical
page frame might be shared by multiple processes (such as
shared memory segments), each bucket is organized as a link
list with each list entry containing the corresponding virtual
address and the pid of each process. The reverse page table
uses physical page frame number for indexing. Given a
physical address captured by HMTT and a specified process id,
one can extract the corresponding virtual address from the
reverse page table in two steps: (1) calculate the physical page
number from the physical address, use it as an index to get the
bucket; (2) access each list entry of the bucket until finding the
specified process id. To improve the searching performance in
the reverse page table, we have implemented each bucket with
an AVL tree (a self-balancing binary search tree) instead of a
link list.

Figure 5. The reconstructed reverse page table.

C. Synchronizing the HMTT Traces with Kernel Page Table
Traces

Figure 6. Synchronization HMTT memory traces with page table traces

during trace analyzing (paddr represents physical address and vaddr represents
virtual address).

Because HMTT has a fixed frequency clock and each
memory trace has a duration field, it is appropriate to use this
clock to synchronize the HMTT traces with kernel page table
traces. At each page table update, the Dump Module will send
an uncacheable memory access request to the HMTT, which
we call a synchronous tag trace. We reserve some physical
memory (nearly 32MB) for synchronous memory access, and
then ioremap it into the kernel space to make it accessible with
nocache flag set. This guarantees that the reserved memory
space could only be accessed by the Dump Module for
synchronous tag accesses and prevents interfering by others
(such as kernel threads and other processes).

Figure 6 shows the synchronization of HMTT memory
traces with page table traces during trace analyzing. The
HMTT memory traces contain both normal traces and
synchronous tag traces. Each time, the analyzer gets the next
trace form HMTT memory traces, it first needs to check
whether it is a synchronous tag trace or not. If so the analyzer
gets the next page table trace from the kernel page table traces
and update the reconstructed reverse page table (i.e, set an
entry or clear an entry), this makes the reverse page table keep
in correct state. If not, it is just a normal memory trace, the
analyzer will use the physical address of the trace to extract (or
query) the corresponding virtual address from the reverse page
table.

D. Dump Objects Virtual Address Zone
In a program, there are two different types of objects: static

objects whose space is automatically managed in the data
segment, and dynamic objects whose space is manually
allocated in the heap. For static objects, we can get the entry
address and the size of them from the symbol table of the
execution file (it is an ELF format file in Linux system). For
dynamic objects, we develop a software toolkit which uses the
LD_PRELOAD environment variable in Linux system to
overlay the malloc() and free() functions to record the entry
address and size of each dynamic object. The overlay operation
might introduce some overhead to the application. We will
evaluate the overhead in section IV. As like dumping page

Memory Traces

is a normal trace

is a synchronous tag
trace

Get next
trace

Is it a
synchronous tag

trace?

Get next page table
trace

Yes

Update RPT

Page Table
Traces

No

Use paddr to get
vaddr from RPT

Analyzer

RPT represents
Reverse Page Table

is a page table trace

0

1

2

3

...

N-1

Vaddr1 pid1 ... Vaddrk pidk

Vaddr1' Pid1' ...

...

Vaddr Pid ...

Physical page
number

Index

49

table, we need to synchronize the object address zone
information with the HMTT traces, this is also done by sending
a synchronous tag trace at each interested object allocation,
thus we can get the time-stamp information for each object
allocation.

Furthermore, if the source code of the program is provided,
we can associate the object information with the main variables
in the program, which is valuable for programmers to identify
the performance bottleneck in variables and to optimize these
variables (that is what we will do in case studies). Even without
source code, it is easy to associate the dynamic object with
calling address for further analysis by backtracking the call
stack.

It should be noted that in our approach the object is not
limited to user space. In fact with careful annotation, memory
access to kernel object can also be identified without difficulty.
Page memory walks and DMA buffers [32] are such examples.
Considering both kernel and user space memory behavior may
help to profile those applications using kernel service
intensively.

The memory trace can be extended to the following format:

<paddr, r/w, time-stamp, pid, vaddr, object, page-walk>

The latter four fields are semantic information for the
program. The Pid field is the id of the process issuing this
memory request; vaddr field is the virtual address in the
process virtual space for the memory request; object field
indicates the object issuing the memory access request; page-
walk is a flag indicates whether the memory request is a page
memory walk due to TLB miss or not. Thus with the object-
relative memory trace, we can:

1) Separate the memory traces of a process into objects,
and then analyze the memory access pattern for each
object.

2) Analyze the percentage of memory requests for each
object, and find the hot objects which contribute the
most of the memory requests. These provide valuable
information for program optimization and compiler
optimization.

3) Analyze the percentage of page memory walks for
each object, and find the hot objects for page memory
walks. These can be used to optimize TLB
performance.

IV. EXPERIMENTS AND CASE STUDIES

A. Experiment Setup
We carried out our experiments with two 2.00GHz Intel

Xeon E5504 processors. Each E5504 processor has 4 physical
cores and we have disabled the Hyper-Thread. There are 3-
level caches in each processor, the L1 instruction and data
caches are 32KB each and the L2 cache is 256KB, both the L1
and L2 are private in each core. The L3 cache is 16-way 4MB
and shared by all four cores in each processor. The cache line
size is 64B for all caches in the hierarchy. There are 2-level
private TLB in each core, the L1 DTLB has 64 entries for 4KB
pages and 32 entries for 2MB pages (huge-page or huge-tlb),

and the second-level TLB has 512 entries for 4KB pages. The
total capacity of physical memory is 4GB with one dual-ranked
DDR3-800 RDIMM, and the peak memory bandwidth is
6.4GB/s. We reserved 0.25GB memory space for HMTT
configuration space and page table buffer, thus the actual
system available memory is 3.75GB. The operating system is
64-bit CentOS5.3 for x86_64, the Linux kernel is 2.6.32.18
which is modified for dumping page tables. The compiler is
gcc 4.1.2. The C language library is glibc 2.5.

As case studies, we choose a custom hybrid MPI/pthread
implemented BFS of Graph500-1.2 benchmarks [1] and the
canneal program from PARSEC-2.1 benchmarks [5]. The BFS
default implements 64 times of Breadth-First Search from
different randomly generated root vertexes on a Recursive
MATrix (R-MAT) scale-free graph. Since we just perform the
object-relative memory profiling for the BFS on one node, we
run the BFS with one process and multiple threads. The
canneal program we use is pthread implementations and with
native input. Both the programs in our experiments are
compiled with -O3 optimization. We run each program three
times with different number of threads respectively.

B. Validation
We used a micro-benchmark to validate our hybrid

hardware/software approach for object relative memory
profiling. The benchmark allocates 5 arrays (they are a0, a1, a2,
a3 and a4), the size of each array is 256MB. After initialize it
with memset (to make sure that the physical pages are all
allocated for them), we traverse each array with a step of 64
bytes and different read/write rate access pattern:

a0: all read accesses, forward
a1: 3/4 read and 1/4 write accesses, forward
a2: 2/4 read and 2/4 write accesses, forward
a3: 1/4 read and 3/4 write accesses, backward
a4: all write accesses, backward

We set the access step as 64B which is the size of a cache
line, to make sure that each access is not created in the same
cache line as the previous access, thus each access would cause
a cache miss and perform a memory request to the DRAM.
Since the size of each array is 256MB, the number of memory
requests for each array is 256MB/64B=4M=4,194,304. We
respectively create a thread for each array traverse with pthread
in Linux with different read/write rate access pattern, for
example, for a1, we performed 3M read accesses to the first 3/4
elements and then 1M write accesses to the last 1/4 elements.
We ran the five threads simultaneously in one process. Further,
to distinguish each array access pattern, we forward traversed
on a0, a1, a2 and backward traversed on a3, a4.

It is noteworthy that the L3 cache adopts write-back policy,
so when a memory write access requests a line not in the L3
cache, it first sends a read request to the memory to get the
line back into the L3 cache, then writes data to the line, and
writes back the data to the memory when the line is evicted out
(this is done by sending a write request to the memory). Since
we make each write access miss in the L3 cache, each write
access will cause one read memory request and one write
memory request. So for all a0~a4, each of the arrays will send
4M read requests and different numbers of write requests.

50

TABLE II. THE OBJECT RELATIVE MEMORY PROFILING RESULTS OF THE
MICRO-BENCHMARK

Obj Read Write Rate Per Error
a0 4,194,370 0 4:0 4:0 0%
a1 4,194,310 1,048,576 4:1 4:1 0%
a2 4,194,369 2,096,927 4:2 4:2 0%
a3 4,194,303 3,087,379 4:2.94 4:3 2.04%
a4 4,194,436 4,149,586 4:3.96 4:4 1.01%

Table II shows the object relative memory profiling results
of the micro-benchmark. The Read/Write column represents
the number of read/write memory requests of each array. The
Rate column represents the rate of read/write requests, the Per
column represents the perfect rate of read/write requests, and
the Error column shows the error of the object-relative
memory profiling. We can see that, each array has nearly 4M
read memory requests, which is the same with our analysis
above. And from a0 to a4, each array performs nearly 0, 1M,
2M, 3M, 4M write requests respectively, and they all conform
with the access pattern. Finally, the largest error of the profiling
is 2.04%. It shows our object-relative memory profiling has
highly accuracy. The possible reasons causing the error include:
invalid hardware prefetch and DRAM refresh etc.

Figure 7 shows the virtual memory traces of the object a0
and a4 of the micro-benchmark. We can see that the virtual
memory traces of the object a0 increase and the virtual
memory traces of the object a4 decrease, because we forward
traverse on object a0 and backward traverse on object a4. This
test shows that our approach can get accurate complete virtual
memory traces for major objects of a program.

We also performed object-relative memory profiling on
serial version SpMV (Sparse Matrix-Vector multiplication), a
program to multiply a sparse matrix (in CSR format) with a
dense vector. The non-zero elements in the matrix are stored in
array ax, and the vector is stored in array xhost. Figure 8 and
figure 9 illustrate that with our object relative memory profiling,
we can decompose the regular access pattern of ax object from
the irregular access pattern of xhost object. The virtual memory
address traces appear periodicity because we ran the multiply
operation multiple times. This test illustrates that different
objects may have different memory access patterns that can be
investigated by our approach.

Figure 7. The virtual memory traces of the object a0 and a4 in the micro-

benchmark.

Figure 8. The regular access pattern of the ax object in SpMV.

Figure 9. The irregular access pattern of the xhost object in SpMV.

C. Overhead
In this subsection, we measure the overhead of object-

relative memory profiling. We show that with our hybrid
hardware/software approach, the overhead is quite lightweight.
The overhead mainly includes two parts: dump page table in
kernel and dump object-relative memory allocation information.
In this subsection, we run all the programs with 8-thread to
measure the overhead.

Figure 10 shows the overhead of the object relative memory
profiling, the original, +dump_pt and +dump_obj each
respectively represents the original run time of the program, the
run time of the program just with dumping page table in kernel,
and the run time of the program with dumping page table and
dumping object relative memory allocation information2. Since
the main memory accesses of a multi-thread program are on a
few large objects, we only need to monitor these objects
relative memory allocation information. In our experiments, we
choose to only monitor objects which are larger than 4KB in
memory profiling. We can see that the average overhead of
dumping page table in kernel is about 0.66% and the average
overhead of dumping object relative memory allocation
information is about 1.60%. The largest overhead of dumping
object relative memory information is 5.00% for the dedup, this
is because the number of object allocations of dedup is large.
Actually there are total 1,240,324 dynamic memory allocations
with size larger than 4KB on the heap during its execution.

2 Since there is negligible overhead of monitoring the physical
memory traces with HMTT (hardware), we do not show it here

a0

a4

51

TABLE III. THE PERCENTAGE OF MEMORY REQUESTS FOR MAIN OBJECTS IN BFS AS THE NUMBER OF THREADS INCREASING

Threads column_r column_w visited_r visited_w rowstarts_r rowstarts_w pred_r pred_w total

1 65.71% 0.00% 5.21% 0.87% 7.79% 0.00% 8.43% 8.44% 96.46%
2 64.96% 0.00% 5.36% 1.32% 7.72% 0.00% 8.35% 8.35% 96.06%
4 55.19% 0.00% 16.01% 4.54% 6.57% 0.00% 7.10% 7.06% 96.46%

32 55.13% 0.00% 17.11% 5.28% 6.58% 0.00% 7.10% 7.06% 98.24%
128 54.22% 0.00% 18.38% 5.27% 6.47% 0.00% 6.98% 6.93% 98.26%

(*_r represents read memory requests and *_w represents write memory requests)

Figure 10. The overhead of the object relative memory profiling.

As shown above, if the number of object memory
allocations (>=4KB) is large, the overhead would increase. To
further reduce overhead, we could set a larger threshold or we
could choose to only monitor the top 10% largest objects of
some complex programs.

Dumping page table and object memory allocations
information during the running of a program would introduce
some cache/memory interference, but the interference is very
low. Because in our experiments, we find that the size of page
table traces and object memory allocation traces is quite small
relative to the size of the normal memory access traces. For
example, running 8-thread canneal with native input set, we
get 200GB memory access traces with only 6.2MB page table
traces and 26.8KB object allocation traces; running 8-thread
streamcluster with native input set, we get 104GB memory
access traces with 6.7MB page table traces and 27.4KB object
allocation traces.

D. Case Studies
1 BFS in Graph500

Graph 500 [1] is a set of large-scale benchmarks for data-
intensive applications, especially graph algorithms for
analytics workloads. Breadth-First Search (BFS) is the most
common and important operation in graph algorithms, which is
the basis of many other graph operations. Graph 500 adopts
synthetic kronecker graphs whose degrees follow power law
distributions, which means that most of the vertices has a small
degree (the number of edges associated with the vertex) and
only a small portion of the vertices has huge degrees. Thus the
graph is represented as compressed sparse row (CSR) format
in order to save space. In a CSR format graph, the main data
structures (objects) are column and rowstarts. The column
object stores the adjacency array for all the vertices one by one

and the rowstarts object stores the start index for each vertex’s
adjacency array in the column object. In each BFS, the visited
object is a bitmap for each vertex indicates whether the vertex
has been visited or not, if visited, then there is no need to
revisit the vertex’s adjacency array. The visited object
improves the BFS performance significantly and needs to be
accessed multiple times for each vertex. The oldq and newq
objects are both simple FIFO queue structures, which store the
vertices to be extended at this level and the next level. The
pred object is used to store the parent vertex for each vertex
during a BFS. The scale of the graph we choose is 23 and the
edgefactor is 16 (default), which mean that the number of the
vertices in the graph is 223 and the mean degree of each vertex
is 16. The total size of the CSR graph is nearly 2GB. The
visited object is 1MB, which is smaller than the LLC capacity
(4MB).

The BFS program mainly contains 4 steps: construct a
graph, run BFS for each root (source vertex), validate, and
compute the performance information. Only the running BFS
step is counting for the performance, so we just perform the
object relative memory profiling for this step.

Table III shows the object relative memory profiling results
of the BFS with the number of threads increasing. We can see
that the column object contributes the largest portion of
memory requests, it has a percentage of 65.71% for 1-thread
and 54.22% for 128-thread, and it is read-only, the write
memory requests is always 0%. The percentage of memory
requests of the column object decreases with the number of
threads increasing, but the percentage of visited object
increases from 6.08% for 1-thread to 23.65% for 16-thread, we
will explain the reason for it latter. The total column represents
the percentage of the total memory requests of the main objects
relative to the total memory requests of the whole BFS
program. We can see that we successfully capture the main
objects contributing to the memory requests, the percentage is
larger than 96%.

Figure 11 shows the normalized memory requests
(including read and write) number of each main object in BFS
against increasing the number of threads. We can see that
except for the visited object, the numbers of memory requests
of all the other main objects are nearly constant (the largest
increasing rate is 0.59%). But for the visited object, the number
of memory requests increases by 79.04% for 2-thread, 547.81%
for 4-thread, and 662.27% for 128-thread (normalized to 1-
thread). That is because the visited object needs to be accessed
every time when a vertex is extended, to check whether the
vertex has been visited, so the number to be accessed during

0.96

0.98

1

1.02

1.04

1.06

N
or

m
al

iz
ed

 O
ve

rh
ea

d Origin +dump_pt +dump_obj

52

Figure 11. The normalized memory requests of each main object in the BFS

against increasing the number of threads, where the baseline is 1-thread.

Figure 12. The normalized speedup of the performance and the memory
bandwidth against the number of threads, where the baseline is 1-thread.

each BFS depends on the degree of the vertex. Since the visited
object (1MB) is less than the L3 cache (4MB), for 1-thread
when the L3 cache contentionis minor, the visited object has
quite a good cache locality (only 6.08%). But with the number
of threads increasing, the access pattern of the visited object
becomes more random (each thread needs to access it) and the
shared L3 cache contention becomes more serious among
these threads, which results in more L3 cache misses of the
visited object during the BFS. For other objects, with the
filtering effect of the visited flag, each element is actually
accessed only once, so the access pattern of these objects are
affected slightly by the increasing L3 cache contention as the
number of threads increasing.

Figure 12 shows the normalized speedup of the
performance (in Traversed Edges Per Second, TEPS[1]) and
the memory bandwidth against the number of threads. We can
see that the performance and the memory bandwidth both
increases as the number of threads varied from 1 to 256, and it
has 3 stages with different characteristics. The first stage is
from 1-thread to 4-thread, the normalized performance
increases nearly at the same rate as the memory bandwidth, so
the performance linearly benefits from the increasing of the
memory bandwidth. The average normalized speedup is about
1.2 as the number of threads doubled. The second stage is from
4-thread to 64-thread, the average normalized speedup of the
memory bandwidth is about 1.28 as the number of threads
doubled, and the average speedup is about 1.23 of the
performance. Thus in this stage, the performance does not fully
benefit from the increasing memory bandwidth, that is because

Figure 13. The normalized rate of the number of page memory walks due to

TLB miss as the number of threads increasing, the baseline is 1-thread.

Figure 14. The percentage of page memory walks for main objects in BFS as

the number of threads increasing.

the shared L3 cache contention increases as the number of
threads increasing and causing more L3 cache misses.
According to figure 11, the visited object suffers the most of
the increasing L3 cache miss due to the more serious L3 cache
contention, which could significantly affect the performance.
The last stage is from 64-thread to 256-thread, the normalized
speedup of the memory bandwidth is increasing very little
(only 0.018), that is because BFS has an irregular memory
access pattern and it has achieved the memory bandwidth
limitation at this stage. For 256-thread in our experiments, the
memory bandwidth achieved 4.66GB/s, which is 72.81% of
the peak memory bandwidth (6.4GB/s). Because of the random
distribution of nodes in the CSR graph, lock contention among
threads and the synchronous overhead at each search level, this
should be the maximum memory bandwidth it could achieve.
In this stage, the performance also increases little (only 0.019)
due to the little increasing memory bandwidth.

And for more than 1024-thread (it is not shown in figure
13), the performance will decrease due to the serious cache
contention. So increasing the number of threads on one hand
can improve memory bandwidth, but on the other hand will
make the L3 cache contention more serious, especially for the
visited object. There is a tradeoff to choose the proper number
of threads. To reduce the cache contention on visited object,
we can adopts page coloring technology [12][17] and protect
the visited object with enough colors.

As figure 13 shown, the number of page memory walks
due to TLB miss also increases with the number of threads

0%

20%

40%

60%

80%

100%

120%

1 2 4 32 128

Pe
rc

en
ta

ge
 o

f P
ag

e
W

al
ks

Number of Threads

rowstarts column pred oldq newq visited

0.94
0.96
0.98

1
1.02
1.04
1.06
1.08

1.1
1.12

1 2 4 32 128

N
or

m
al

iz
ed

 R
at

e
of

 P
ag

e
W

al
ks

Number of Threads

0

1

2

3

4

5

1 2 4 8 16 32 64 128 256

N
or

m
al

iz
ed

 S
pe

ed
up

Number of Threads

Performance Bandwidth

0

2

4

6

8

10

rowstarts column pred oldq newq visited

N
or

m
al

iz
ed

 R
at

e
of

 M
em

or
y

Re
qu

es
ts

Main Objects in BFS

1 2 4 32 128

53

Figure 15. The normalized performance speedup with huge pages (hugetlb)

as the number of threads varied from 1 to 128.

increasing, it increase 3.5% for 2-thread and 9.6% for 128-
thread. Figure 14 shows the percentage of page memory walks
for each main object. We can see that the percentage for each
main object nearly maintains constant among different number
of threads. The visited, newq and oldq objects exhibit nearly no
page memory walks (nearly 0%), that is because the visited
object is quite small (1MB) and it can reside in the TLB; the
newq and oldq objects are accessed with a nearly contiguous
pattern which would cause little TLB miss. The other three
objects contribute the most of the page memory walks; the
average percentages are nearly 11.92% for rowstarts object,
72.85% for column object, and 14.02% for pred object. The
column object suffers the most of page memory walks, because
the column object is the largest data structure in the BFS
program (nearly 2GB), and it is accessed in a inter-vertex
random and inner-vertex continuous manner.

To reduce the number of page memory walks caused by the
column object, we can put the column object into huge pages
(2MB) to reduce the TLB miss 3 . Figure 15 shows the
normalized performance speedup with the huge pages (or
hugetlb). It can achieve up to 31.59% performance
improvement for 1-thread, but much lower for multiple threads,
8.18% for 128-thread. That is because with the number of
threads increasing, the column object is accessed more
randomly, which would result in more TLB contention. But on
the other side, for BFS, increasing number of threads could
achieve better load-balance, and decrease the level
synchronous overhead among threads. Thus we can see the
different normalized performance speedup under different
number of threads with huge page.

2 Canneal
Canneal benchmark from PARSEC uses cache-aware

simulated annealing (SA) to minimize the routing cost of a
chip design [5]. In the experiments, we ran the pthreads
parallelization version benchmark with native input, and
performed the object-relative memory profiling in the Region-
Of-Interest (ROI).

There are two main data objects which contribute most of
the memory accesses. The _elements object stores the actual

3 Since the number of TLB entries is limited for huge pages (32 in
Nehalem), we just put the column object in huge pages to avoid
contention for it among multiple objects

Figure 16. The number of memory requests for the objects in canneal as the

number of threads varied from 1 to 8.

Figure 17. The number of page memory walks for each object in canneal as
the number of threads varied form one to eight. The total indicates the total

number of the program.

elements, each of which contains a name and all the fanin and
fanout elements in the netlist. The _locations object stores the
actual locations, and each location is a two-dimensional
coordinates. Each time it randomly chooses two netlist
elements and tries to swap them with a cost-related probability
to minimize routing cost. Thus the _elements object needs to
be updated (written) frequently (when a swap happens), and
the _locations object only needs to be read to calculate the new
cost.

Figure 16 shows the number of memory requests for each
main object as the number of threads is varied from one to
eight. The _elements object has mostly memory write requests
and the _locations object is read-only, there are no write
requests on it. Further, we can see an interesting phenomenon
that all the objects has nearly the same number of the memory
read and write requests in different number of threads (1 to 8).
And the average percentage of memory read/write requests for
main objects are: 30.87% for _elements read requests, 27.92%
for _elements write requests, 28.39% for _locations read
requests, 0% for _locations write requests, and 12.82% for
others memory requests.

Figure 17 shows the number of page memory walks for
each object as the number of threads increasing. The total
number of the page memory walks for the program increases
form 1.58E08 for 1-thread to 2.15E08 for 8-thread, meanwhile,
the number of page memory walks for _elements object is
increasing from 2.96E07 for 1-thread to 7.95E07, and the
_locations object has almost no page memory walks. Thus in

0.E+00

5.E+07

1.E+08

2.E+08

2.E+08

3.E+08

1 2 4 8

N
um

be
r o

f P
ag

e
W

al
ks

Number of Threads

total _elements _locations

0.E+00

2.E+08

4.E+08

6.E+08

8.E+08

1.E+09

N
um

be
r o

f m
em

or
y

 re
qu

es
ts

Main Objects in canneal

1 2 4 8

0.8

0.9

1

1.1

1.2

1.3

1.4

1 2 4 8 16 32 64 128

N
or

m
al

iz
ed

 S
pe

ed
up

Number of Threads

w/o hugetlb w/ hugetlb

54

Figure 18. The normalized performance speedup as the number of threads

varied form one to eight.

Figure 19. The normalized rate page memory walks and the reduced speedup

as the number of thread varied from 1 to 8.

canneal, the _elements objects is the main reason for the
increasing of the page memory walks as the number of threads
increasing. For 8-thread, the percentage of the page memory
walks is up to 25.84% for _elements object.

Figure 18 shows the normalized performance speedup as
the number of threads increasing. The normalized speedup is
1.95 for 2-thread, 3.80 for 4-thread, and 5.97 for 8-thread. Here
we define reduced speedup as the rate of the peak speedup (the
number of the threads) relative to the actual speedup, thus the
higher the reduced speedup means the poorer scalability. For
instance, for 2-thread, the reduced speedup is 2/1.95=1.03.

Figure 19 shows the normalized rate of the number of page
memory walks and the reduced speedup, we can see that the
reduced speedup has a strong correlation with the number of
page memory walks as the number of threads increasing. For
8-thread, the normalized rate of the page walks is 1.27 and the
reduced speedup is 1.34. According to figure 16, the number of
the memory requests is almost no change, thus here we can
conclude that the main reason for the reduced speedup is the
increasing page walks. Furthermore according to figure 17, the
_elements object is the real source.

Thus we put the _elements object into huge pages to
optimize its TLB performance. As figure 20 shown, with huge
page, the normalized performance speedup is 1.07 for 1-thread,
and 1.055 for 8-thread. The speedup is reduced due the more
serious TLB contention as the number of threads increasing.

Figure 20. The normalized performance speedup with huge pages as the
number of threads varied from one to eight of the dedup program, the baseline

is without huge pages.

V. RELATED WORK
There are several areas of effort related to memory trace

profiling: binary rewriting, Instrumentation, Simulation, and
hardware performance counter etc.

Binary rewriting: The METRIC [20] system exploits
dynamic binary rewriting for partial memory reference tracing.
It also compresses the traces and employs offline cache
simulation to find out the memory performance bottlenecks.
Ben-Asher et al. [2] employ source code instrumentation with
the LLVM compiler framework to collect memory traces, and
the memory traces are used to guide automatic data structure
partitioning to increase memory parallelism. Weinberg et al.
[39] gather memory access characteristics using a binary
rewriting tool and then use the traces to quantify the spatial
locality and temporal locality for HPC applications.

Performance Counter: Itzkowitz et al. [14] exploits
UltraSPARC-III hardware counters for memory behavior
profiling, however the hardware counters can just provide
event count without the memory address and instruction. Thus
they employ some extensions of the Sun ONE Studio
compilers further more to provide per-instruction details of
memory accesses, data aggregated and sorted by object
structure types and elements. Buck et al. [8] presents a tool
named Cache Scope on the Itanium 2 which exploits
performance counter to sample cache miss address and then
performs the mapping of addresses to objects for variables by
using the debug information. Eranian [13] argues that the
performance counters are the key hardware resource to locate
and understand memory subsystem performance with low
overhead. DProf [27] is a data-oriented profiler which can
attribute cache misses to data types instead of code. DProf uses
performance monitoring hardware (AMD instruction-based
sampling hardware and x86 debug registers) to acquire
memory address references, which is as the basis of
categorizing all types of cache misses. Oprofile [16] is a
system-wide profiler for Linux systems at low overhead, it
samples hardware performance counters of the CPU to enable
profiling of a wide variety of interesting statistics and reports
the cost of each function.

Instrumentation: Pin [19], DynamoRIO [7], Valgrind [24]
and ATOM [31] are widely used binary instrumentation tools,
and they are often used for memory profiling, the main

0.9

0.95

1

1.05

1.1

1 2 4 8

N
or

m
al

iz
ed

 S
pe

ed
up

Number of Threads

w/o hugetlb w/ hugetlb

0.80

0.90

1.00

1.10

1.20

1.30

1.40

1 2 4 8

N
or

m
al

iz
ed

 R
at

e

Number of Threads

Page Walks Reduced Speedup

0

1

2

3

4

5

6

7

1 2 4 8

N
or

m
al

iz
ed

 S
pe

ed
up

Number of threads

55

drawback of these popular instrumentation tools is heavy
overhead. SIGMA [11] is a data collection framework that
uses software instrumentation to gather memory addresses
during the running of a process, it also provides a number of
simulation and analysis tools to provide detailed information
on variables and functions. To reduce instrumentation
overhead, Ephemeral instrumentation [35] uses statistical
sampling, shadow profiling [23] and SuperPin [36] execute
instrumented code in parallel with a program’s execution to
perform instrumentation sampling for multi-core system.
Zhang and Gupta [41] exploit statically instrumenting to
collect whole execution traces (including memory address
traces) with an efficient compression mechanism. Weinberg et
al. [38] use binary instrumentation to reduce memory tracing
overheads without significant loss of accuracy with basic block
sampling techniques. Roy et al. [29] present a hybrid static and
dynamic binary rewriting instrumentation, the instrumented
code is written into the PIC in active mode and then executed
out of the PIC in passive mode to reduce overhead. Marathe et
al. [21] present two hybrid hardware performance counters
with software instrumentation techniques to determine cache
coherence bottlenecks in shared-memory applications.

Simulation: MemSpy [22] is a tool for locating memory
system bottlenecks with detailed statistics on low-level
memory system events, which uses a software memory
simulation in monitoring the memory system behavior of
programs on both data- and code-oriented information.
Weidendorfer et al.[37] use runtime instrumentation and cache
simulation to analyze memory access behavior. SIMT [33] is
an execution-driven simulator focus on the memory
performance and contains mainly facilities for simulating the
memory system.

Torrellas et al. [34] present a similar hybrid
hardware/software approach for characterizing cache
performance of multiprocessor OS. However their hardware
monitor relied on MIPS buses which were proprietary and the
software implementations were totally different from ours.
Actually, our work is more portable than their approach which
depends on MIPS’ architecture. For example, their approach
leveraged MIPS’ software-managed TLB to track physical-
virtual address mapping. But this approach is not suited for
contemporary prevalent x86 platforms which use page walks
to refill TLB. Therefore, our Linux-based software adopts
monitoring page-faults to track physical-virtual address
mapping.

Wu et al. [40] present an object-relative translation for
effective memory profiling instead of raw memory addresses,
which enables decomposition of a memory access stream to
separate regular and interesting information from the irregular.
However in their work, the raw memory profiling is
implemented by instrumentation and it will suffer heavy
overhead. Our hybrid hardware/software approach can
significantly reduce the memory profiling overhead and get
object-relative information for each memory trace.

Actually, detailed object-level memory profiling is
valuable for performance optimization, such as it can be used
to optimize object-level cache partition through well known
page coloring technology in Soft-OLP [18]. However, since

they adopted dynamic instrumentation (with Pin) for memory
profiler, the overhead was heavy: the slowdown was 50 to 80
times even with 10% sampling. With our hybrid
hardware/software memory profiler, we could also get full
detailed and accurate shared cache misses on a set of objects
for a given cache size directly without cache model estimation
[18], and the overhead is lightweight (no more than 6%).

VI. CONCLUSIONS
In this paper, we have proposed a hybrid

hardware/software approach for object relative memory
profiling, which is able to not only profile the object level
memory traces of data access, but also identify the page
memory walks due to TLB miss at object level. It adopts
hardware snooping technology, modifies the kernel to support
dump page table, and dumps object virtual address range
during the running of a program. We present some case studies
to show that with our approach, we can effectively identify the
memory and TLB performance at object level, which is
valuable for optimization.

ACKNOWLEDGMENT
The authors thank the anonymous reviewers for their

constructive suggestions. They thank Huiwei Lv from ASG,
ICT for providing the pthread-based Graph500 BFS
benchmark. This research is supported by the National Natural
Science Foundation of China (NSFC) under grant numbers
60925009, 60921002, 60903046, 60803030, 61033009 and the
National Basic Research Program of China (973 Program)
under a grant number 2011CB302502, and by IBM SUR
Awards program.

REFERENCES
[1] The Graph 500 List, 2011. URL http://www.graph500.org/.
[2] Yosi Ben-Asher and Nadav Rotem. 2010. Automatic memory

partitioning: increasing memory parallelism via data structure
partitioning. In Proceedings of the eighth IEEE/ACM/IFIP international
conference on Hardware/software codesign and system synthesis
(CODES/ISSS '10). ACM, New York, NY, USA, 155-162.

[3] Yungang Bao, Mingyu Chen, Yuan Ruan, et al. HMTT: a platform
independent full-system memory trace monitoring system. in ACM
SIGMETRICS, 2008.

[4] Ravi Bhargava, Benjamin Serebrin, Francesco Spadini, and Srilatha
Manne. 2008. Accelerating two-dimensional page walks for virtualized
systems. In Proceedings of the 13th international conference on
Architectural support for programming languages and operating
systems (ASPLOS XIII).

[5] Christian Bienia, Sanjeev Kumar, Jaswinder Pal Singh and Kai Li. The
PARSEC Benchmark Suite: Characterization and Architectural
Implications. In Proceedings of the 17th International Conference on
Parallel Architectures and Compilation Techniques, October 2008.

[6] Daniel Bovet , Marco Cesati, Understanding The Linux Kernel, Oreilly
& Associates Inc, 2005

[7] Derek L. Bruening. 2004. Efficient, Transparent, and Comprehensive
Runtime Code Manipulation. Ph.D. Dissertation. Massachusetts Institute
of Technology, Cambridge, MA, USA. AAI0807735.

[8] Bryan R. Buck and Jeffrey K. Hollingsworth. 2004. Data Centric Cache
Measurement on the Intel ltanium 2 Processor. In Proceedings of the
2004 ACM/IEEE conference on Supercomputing (SC '04). IEEE
Computer Society, Washington, DC, USA, 58-.

[9] T.M. Chilimbi, “Efficient Representations and Abstractions for
Quantifying and Exploiting Data Reference Locality,” ACM SIGPLAN
Conference on Programming Language Design and Implementation
(PLDI), pages 191–202, Snowbird, Utah, June 2001.

56

[10] T.M. Chilimbi and M. Hirzel, “Dynamic Hot Data Stream Prefetching
for General-Purpose Programs,” ACM SIGPLAN Conference on
Programming Language Design and Implementation (PLDI), pages 199-
209, 2002.

[11] Luiz DeRose, K. Ekanadham, Jeffrey K. Hollingsworth, and Simone
Sbaraglia. 2002. SIGMA: a simulator infrastructure to guide memory
analysis. In Proceedings of the 2002 ACM/IEEE conference on
Supercomputing (Supercomputing '02).

[12] Xiaoning Ding, Kaibo Wang, and Xiaodong Zhang. 2011. ULCC: a
user-level facility for optimizing shared cache performance on
multicores. In Proceedings of the 16th ACM symposium on Principles
and practice of parallel programming (PPoPP '11).

[13] Stéphane Eranian. 2008. What can performance counters do for memory
subsystem analysis?. In Proceedings of the 2008 ACM SIGPLAN
workshop on Memory systems performance and correctness: held in
conjunction with the Thirteenth International Conference on
Architectural Support for Programming Languages and Operating
Systems (ASPLOS '08) (MSPC '08).

[14] Marty Itzkowitz, Brian J. N. Wylie, Christopher Aoki, and Nicolai
Kosche. 2003. Memory Profiling using Hardware Counters. In
Proceedings of the 2003 ACM/IEEE conference on Supercomputing (SC
'03). ACM, New York, NY, USA, 17-.

[15] Weidendorfer, J., Kowarschik, M., and Trinitis, C. 2004. A Tool Suite
for Simulation Based Analysis of Memory Access Behavior. In Int'l
Conf. on Computational Science ICCS.

[16] J. Levon et al. Oprofile, August 2011. URL:
http://oprofile.sourceforge.net/.

[17] J. Lin, Q. Lu, X. Ding, Z. Zhang, X. Zhang, and P. Sadayappan. Gaining
insights into multicore cache partitioning: Bridging the gap between
simulation and real systems. In HPCA '08, pages 367--378, Salt Lake
City, UT, 2008.

[18] Qingda Lu, Jiang Lin, Xiaoning Ding, Zhao Zhang, Xiaodong Zhang,
and P. Sadayappan. 2009. Soft-OLP: Improving Hardware Cache
Performance through Software-Controlled Object-Level Partitioning. In
Proceedings of the 2009 18th International Conference on Parallel
Architectures and Compilation Techniques (PACT '09).

[19] Chi-Keung Luk, Robert Cohn, Robert Muth, Harish Patil, Artur Klauser,
Geoff Lowney, Steven Wallace, Vijay Janapa Reddi, and Kim
Hazelwood. 2005. Pin: building customized program analysis tools with
dynamic instrumentation. In Proceedings of the 2005 ACM SIGPLAN
conference on Programming language design and implementation
(PLDI '05).

[20] Jaydeep Marathe, Frank Mueller, Tushar Mohan, Sally A. Mckee,
Bronis R. De Supinski, and Andy Yoo. 2007. METRIC: Memory
tracing via dynamic binary rewriting to identify cache inefficiencies.
ACM Trans. Program. Lang. Syst. 29, 2, Article 12 (April 2007).

[21] Jaydeep Marathe, Frank Mueller, and Bronis R. de Supinski. 2006.
Analysis of cache-coherence bottlenecks with hybrid hardware/software
techniques. ACM Trans. Archit. Code Optim. 3, 4 (December 2006),
390-423.

[22] Margaret Martonosi, Anoop Gupta, and Thomas Anderson. 1992.
MemSpy: analyzing memory system bottlenecks in programs. In
Proceedings of the 1992 ACM SIGMETRICS joint international
conference on Measurement and modeling of computer systems
(SIGMETRICS '92/PERFORMANCE '92), Blaine D. Gaither (Ed.).
ACM, New York, NY, USA, 1-12.

[23] Tipp Moseley , Alex Shye , Vijay Janapa Reddi , Dirk Grunwald ,
Ramesh Peri, Shadow Profiling: Hiding Instrumentation Costs with
Parallelism, Proceedings of the International Symposium on Code
Generation and Optimization, p.198-208, March 11-14, 2007

[24] Nicholas Nethercote and Julian Seward. 2007. Valgrind: a framework
for heavyweight dynamic binary instrumentation. In Proceedings of the
2007 ACM SIGPLAN conference on Programming language design and
implementation (PLDI '07). ACM, New York, NY, USA, 89-100.

[25] Nicholas Nethercote and Julian Seward. 2007. How to shadow every
byte of memory used by a program. In Proceedings of the 3rd
international conference on Virtual execution environments (VEE '07).
ACM, New York, NY, USA, 65-74.

[26] Jeffrey Odom, Jeffrey K. Hollingsworth, Luiz DeRose, Kattamuri
Ekanadham, and Simone Sbaraglia. 2005. Using Dynamic Tracing
Sampling to Measure Long Running Programs. In Proceedings of the
2005 ACM/IEEE conference on Supercomputing (SC '05). IEEE
Computer Society, Washington, DC, USA, 59-.

[27] Aleksey Pesterev, Nickolai Zeldovich, and Robert T. Morris. 2010.
Locating cache performance bottlenecks using data profiling. In
Proceedings of the 5th European conference on Computer systems
(EuroSys '10). ACM, New York, NY, USA, 335-348.

[28] Brian M. Rogers , Anil Krishna , Gordon B. Bell , Ken Vu , Xiaowei
Jiang , Yan Solihin, Scaling the bandwidth wall: challenges in and
avenues for CMP scaling, Proceedings of the 36th annual international
symposium on Computer architecture, June 20-24, 2009, Austin, TX,
USA

[29] Amitabha Roy, Steven Hand, and Tim Harris. 2011. Hybrid binary
rewriting for memory access instrumentation. In Proceedings of the 7th
ACM SIGPLAN/SIGOPS international conference on Virtual execution
environments (VEE '11). ACM, New York, NY, USA, 227-238.

[30] S. Rubin, R. Bodik, and T. Chilimbi, “An Efficient Profile-Analysis
Framework for Data Layout Optimizations,” The 29th ACM SIGPLAN-
SIGACT Symposium on Principles of Programming Languages (POPL),
Portland, Oregon, Jan. 2002.

[31] A. Srivastava and A. Eustace. ATOM: A system for building
customized program analysis tools. In Proceedings of the ACM
SIGPLAN 1994 conference on Programming language design and
implementation, pages 196–205. ACM New York, NY, USA, 1994.

[32] Dan Tang, Yungang Bao, Weiwu Hu, Mingyu Chen, DMA Cache:
Using On-Chip Storage to Architecturally Separate I/O Data from CPU
Data for Improving I/O Performance, in the 16th IEEE International
Symposium on High-Performance Computer Architecture (HPCA-16),
2010.

[33] Jie Tao, Martin Schulz, and Wolfgang Karl. 2003. A Simulation Tool
for Evaluating Shared Memory Systems. In Proceedings of the 36th
annual symposium on Simulation (ANSS '03). IEEE Computer Society,
Washington, DC, USA, 335-.

[34] Josep Torrellas , Anoop Gupta , John Hennessy, Characterizing the
caching and synchronization performance of a multiprocessor operating
system, Proceedings of the fifth international conference on
Architectural support for programming languages and operating
systems, p.162-174, October 12-15, 1992, Boston, Massachusetts,
United States

[35] O. Traub, S. Schechter, and M. Smith. Ephemeral instrumentation for
lightweight program profiling, 2000.

[36] Steven Wallace and Kim Hazelwood. 2007. SuperPin: Parallelizing
Dynamic Instrumentation for Real-Time Performance. In Proceedings
of the International Symposium on Code Generation and Optimization
(CGO '07).

[37] Josef Weidendorfer, Markus Kowarschik and Carsten Trinitis. A Tool
Suite for Simulation Based Analysis of Memory Access Behavior.
Proceedings of the 4th International Conference on Computational
Science (ICCS 2004), Krakow, Poland, June 2004.

[38] Jonathan Weinberg and Allan Edward Snavely. 2008. Accurate memory
signatures and synthetic address traces for HPC applications. In
Proceedings of the 22nd annual international conference on
Supercomputing (ICS '08). ACM, New York, NY, USA, 36-45.

[39] Jonathan Weinberg, Michael O. McCracken, Erich Strohmaier, and
Allan Snavely. 2005. Quantifying Locality In The Memory Access
Patterns of HPC Applications. In Proceedings of the 2005 ACM/IEEE
conference on Supercomputing (SC '05).

[40] Qiang Wu , Artem Pyatakov , Alexey Spiridonov , Easwaran Raman ,
Douglas W. Clark , David I. August, Exposing Memory Access
Regularities Using Object-Relative Memory Profiling, Proceedings of
the international symposium on Code generation and optimization:
feedback-directed and runtime optimization, p.315, March 20-24, 2004,
Palo Alto, California

[41] Xiangyu Zhang , Rajiv Gupta, Whole Execution Traces, Proceedings of
the 37th annual IEEE/ACM International Symposium on
Microarchitecture, p.105-116, December 04-08, 2004, Portland, Oregon

57

