
Trace-driven Simulation of Memory System Scheduling in

Multithread Application

Pengfei Zhu1,2 Mingyu Chen1 Yungang Bao1 Licheng Chen1,2 Yongbing Huang1,2

1
State Key Laboratory of Computer Architecture

Institute of Computing Technology

Chinese Academy of Sciences

Beijing, China 100190

2
Graduate School of Chinese Academy of Sciences

 Beijing, China 100190

{zhupengfei, cmy, baoyg, chenlicheng, huangyongbing }@ict.ac.cn

ABSTRACT

Along with commercial chip-multiprocessors (CMPs)

integrating more and more cores, memory systems are

playing an increasingly important role in multithread

applications. Currently, trace-driven simulation is widely

adopted in memory system scheduling research, since it is

faster than execution-driven simulation and does not

require data computation. On the contrary, due to the same

reason, its trace replay for concurrent thread execution

lacks data information and contains only addresses, so

misplacement occurs in simulations when the trace of one

thread runs ahead or behind others. This kind of distortion

can cause remarkable errors during research. As shown in

our experiment, trace misplacement causes an error rate of

up to 10.22% in the metrics, including weighted IPC

speedup, harmonic mean of IPC, and CPI throughput. This

paper presents a methodology to avoid trace misplacement

in trace-driven simulation and to ensure the accuracy of

memory scheduling simulation in multithread applications,

thus revealing a reliable means to study inter-thread actions

in memory systems.

Categories and Subject Descriptors

B.3.3 [Memory Structures]: Performance Analysis and

Design Aids—simulation; C.4 [Computer Systems

Organization]: Performance of Systems—measurement

techniques; I.6 [Computing Methodologies]: Simulation

and Modeling

General Terms

Experimentation, Measurement

Keywords

Trace-driven simulation, memory scheduling algorithm,

trace misplacement, multithread application.

1. INTRODUCTION
As commercial chip-multiprocessors (CMPs) integrate

more and more cores, memory system studies, including

data hierarchy, memory scheduling, and DRAM

architecture, are playing an increasingly important role in

computer architecture. Memory system research, especially

memory scheduling algorithms which handle requests to

the major shared resource DRAM, is mainly based on

simulation. Since the execution of benchmarks in a real

system can hardly evaluate every design point in the

memory system, and it is impossible to implement the

salient points by prototyping the innovations at the early-

research stage, the software simulator becomes a common

tool to explore the memory system’s design space.

However, simulating such a memory system through

accurate execution-driven tools is difficult. The simulation

for the memory scheduling, which aims to improve the

memory system performance by prioritizing requests to the

shared resources in DRAM (i.e., channel/rank/bank/row) [1,

8, 9, 10, 11], is increasingly challenging since the number

of integrated cores and concurrent threads in CMP systems

keep growing, as does data size.

Unlike execution-driven simulation, trace-driven

simulation takes the program instructions and address

traces as the input. Without the heavy burden of

computation and data movements, the trace-driven

simulator often runs faster and gives the researcher more

flexibility to employ simulation experiments. Furthermore,

in the memory scheduling research area, trace-driven

simulation is very suitable for memory scheduling studies

since memory access traces can be produced by workloads

in platforms with different ISAs to simulate the memory

system performance in a variety of machines, as well as in

heterogeneous systems, examples of which are described in

[2, 3].

However, when used to simulate memory scheduling

algorithms for multi-threaded workloads, a trace-driven

tool also has an inherent limitation. The trace-driven

simulation cannot capture or model inter-thread actions in

parallel multithread applications, including inter-thread

order and synchronizations. Meanwhile, the goals of the

memory scheduling algorithm are to resolve the memory

contention or interference, and to enhance both the

performance and the fairness of a shared DRAM system by

arbitrating the memory accesses from multi-threads [10].

When a memory scheduling simulator replays a multithread

application trace, the key problems in the simulation are:

since no data value in the trace can be used to determine the

inter-thread behavior, 1) the thread’s actions in the

interleaved critical regions are hardly aligned with the trace

collection process, and 2) barriers do not take effect to

force asynchronous threads to act as if they were

synchronous. In this sense, the traces will be skewed and

misplaced. The trace misplacement refers to a situation that

occurs when a misaligned lock acquiring order or an

ineffective barrier causes a thread/core to run ahead or

behind others in trace replaying. We define misplaced

interference as interference from a thread running a

misplaced trace. When the trace misplacement occurs, the

memory system evaluated with the proposed scheduling

algorithm will be stimulated by the pressure of misplaced

conflict and interference in the shared resource, such as

memory channels, row buffers, and DRAM banks.

Moreover, misplaced multi-traces may reflect a particular

disorder that may not even occur in the real system.

Consequently, the trace-driven simulation will report a

misleading evaluation metric result for a proposed new

memory scheduling algorithm in multi-thread applications.

As shown in our experiment (see the details in section 4),

trace misplacement causes maximum error rate of 10.22%

in terms of the metrics: weighted IPC speedup, harmonic

mean of IPC, and CPI throughput.

Our goal is to design a methodology that maintains

inter-thread ordering and synchronization consistency in

trace capturing and replaying, and improves the preciseness

of memory scheduling trace-driven simulation in parallel

multithread applications.

This paper makes contributions as follows. We

propose a simple methodology to avoid trace misplacement

when simulating a memory scheduling algorithm in parallel

multithread applications. At the trace collection time, we

define some critical instrumentation points to capture the

inter-thread actions in a multithread application memory

trace, especially through intercepting the lock acquiring

order and barrier synchronization in the execution. Then, at

the trace-replaying time, the lock acquiring order and

barrier synchronization are precisely reproduced.

Additionally, the simulator injects an appropriate pre-

written instruction trace generated from the template into

the execution points. This results in the trace replay not

skewing the contention in the shared resources. This

simulation methodology takes full advantage of the existing

instrumentation technology and trace-driven simulation,

opens a new opportunity to simplify the inter-thread

ordering and synchronization in trace capturing and

replaying, and helps to improve the precision of memory

scheduling trace-driven simulation in parallel multithread

applications.

The rest of this paper is organized as follows: Section

2 gives a description of our motivation, we present the

details of our methodology in Section 3, and we show our

experiments and results in Section 4. Section 5 is a

discussion of the coverage and opportunity, and Section 6

describes related work. Finally, we conclude our paper with

the future possible work in Section 7.

2. MOTIVATION
The lock and barrier are commonly used in multi-

threaded applications to protect a critical region and to

avoid synchronization problems, respectively. The lock

ensures the critical region’s mutual exclusion, which means

that at any given time only one thread acquires the lock

successfully and executes the critical region, and other

threads attempting to access the same lock must wait until

the lock is released. Thus, the traces produced from the

execution of the critical region have the same global order

as the lock acquiring. Figure 1 (a) shows a common

scenario of the lock in a multithreaded application:

operations between a producer thread and a consumer

thread. In such type of operations, the data processed by the

producer thread 1 are transferred to the consumer thread 0

through a shared list. The insertion and removal of the

ready data are protected by the critical region to prevent

competition that will corrupt the list. In that execution, the

consumer thread 0 is always waiting for the producer

thread 1 to fulfill the list. In the example, thread 0 acquires

a lock at t0, and runs the critical region code to fetch the

element from the list, but finds that the list is empty, then

releases the lock at t1. Thread 1 acquires the lock at t2,

injects a new element into the list, and then releases the

lock at t4. In that process, thread 0 again tries to acquire the

lock at t3, but waits to enter the critical region until t4, then

fetches the new element from the list, and finally releases

the lock at t5 and begins to process it. In the trace replay

stage, since there is no data value in the trace of the critical

region, the simulator will not determine if the list is empty

or not and just blindly runs through the trace. Thus, the

interactions between the two threads recorded in the trace

will not be precisely reproduced in the simulation. For

example, in the simulation, if thread 0 runs faster than

thread 1, thread 0 will acquire the lock and successfully

enter the critical region twice, then begin to run trace B in

which thread 0 processes a new element. But thread 1 has

not acquired the lock and has not entered the critical region

to insert the new element into the list. This disorder of the

critical regions will never occur in a real machine since the

consumer will not process a new element before the

producer generates it. From the memory scheduling point

of view, the interference in the shared memory resources

occurring in the element processing progress (trace A) and

the element generation (trace B) will be lost when the

thread 0 trace is replayed ahead of the thread 1 trace. This

is trace misplacement. The worse situation is that once

trace misplacement occurs, misplacement will increasingly

take place in the remaining parts of the trace files.

Fortunately, however, if we maintain the same lock-

acquiring order as in the trace capturing process, the

simulation will ensure a correct critical region order. Thus,

the interference in the memory shared resource will occur

on trace A and trace B. Otherwise, the stimulus to memory

scheduling algorithm is skewed and does not represent the

precise interference through the traces.

A barrier in multi-thread application traces is similar

with the lock. Since a thread that reaches a barrier must be

blocked until all other threads reach the barrier, this

implicitly maintains a global order between the traces on

both sides of the barrier. This order must be reproduced in

the simulation. Figure 1 (b) shows an example of two

threads under the synchronization of a barrier. The trace D

behind the barrier must be replayed after trace A when all

threads reach the barrier. No memory scheduling algorithm

will break this restriction, which means the interference in

the shared resource to be optimized by memory scheduling

will always exist between trace A and B, or between trace

C and trace D. It is impossible for the memory scheduling

algorithm to attempt to improve system speedup by

optimizing the interference between trace A and D.

From these examples, we can conclude that the trace-

driven simulation of memory scheduling in a multi-

threaded application must ensure the inter-thread order and

synchronization consistency with the trace producing

process to maintain the correct interference and contention

in the shared memory resources.

3. METHODOLOGY
This paper proposes a new methodology that allows

trace-driven tools to precisely simulate the memory

scheduling algorithm in a multithread application. To

achieve this goal, we designed two components to ensure

the inter-thread order consistency between the trace

collecting and trace replaying. The first component is a set

of instrumentation positions that recognize two important

types of execution points: the lock execution point and the

barrier execution point. At these execution points, the

instrumentation annotates the inter-thread ordering

sequence in the trace. The second component is a precise

trace replaying method in a trace-driven tool. This method

aims to eliminate the trace skew or misplacement in the

simulation, as well as to inject an appropriate dynamic

instruction trace into the simulation model according to the

inter-thread action information.

Figure 2 illustrates the conceptual scheme of the

methodology, which consists of two major steps from top

to bottom. The first step collects the workload’s traces by

the instrumentation, which particularly monitors the lock

and barrier execution points in the dynamic instruction

stream. The application is instrumented at the key positions

to record the inter-thread ordering and synchronization,

which are annotated in the trace. The second step feeds the

trace, including the ordering and synchronization

annotation, into a memory scheduling simulation model,

along with a set of pre-analyzed trace piece templates. The

order and synchronization are faithfully maintained by the

simulator. When the simulation reaches the annotated

execution point, the simulator assembles the annotation into

the trace piece template and injects the appropriate

annotated trace pieces into the simulation according to the

ordering requirement. By this means, the simulator avoids

the misplacement-caused disorder of critical region traces

and the synchronization problem. Thus, the memory

scheduling simulation will be stimulated by the precise

interference among threads.

The following two sections will describe the detailed

implementations of the two components in the

methodology.

4.1 Instrumentation positions

Thanks to the compilation technology, we can

instrument additional functions into any workload

execution points, statically or dynamically. Our proposed

methodology makes full use of the instrumentation

technology, and annotates the important ordering and

synchronization information in the trace. Two important

execution points need be annotated: the lock execution

point and the barrier execution point, which are in charge

Trace B

Trace A

non-critical region critical region acquire lock release lock

Thread 0

Thread 1

t0 t1 t2 t3 t4 t5

time

Trace A

Trace D

Trace C

Thread 0

Thread 1

t0 t1 t2

time

Trace B

code in racing waiting for barrier enter barrier leave barrier

(a) critical region and lock (b) barrier and waiting

Figure 1 Trace alignment determined by lock and barrier

of two types of trace misplacement: the disorder of the

critical regions and the thread’s synchronization problem,

respectively.

Figure 3 shows the instrumentation positions in the

workload code to annotate the execution points discussed

above. Since there are two kinds of lock operations, the

lock execution points consist of the acquiring lock and the

releasing lock. Any point has one entrance and one exit.

Thus, there are a total of four instrumentation positions for

the lock: before-acquiring, after-acquiring, before-

releasing, and after-releasing. The before-acquiring

represents the potential start of waiting on a lock when this

thread fails acquisition, while the after-acquiring means the

deterministic end of waiting on a lock when this thread

wins acquisition. On the contrary, the before-releasing

serves as the potential end of waiting on a lock if other

threads are acquiring a lock in the race, while the after-

releasing plays a role of expressing the deterministic end of

waiting on a lock if one of the other threads wins the

competition. The barrier instrumentation positions consist

of before-entering and after-leaving. The before-entering

indicates the potential waiting on a barrier if the thread

wins the race, while the after-leaving hints at the

deterministic start of the race for the next barrier.

Additionally, both the lock and the barrier have the before-

initializing positions, which are used by the instrumentation

to build an internal data structure for the trace collection.

All these execution points have different annotation

responsibilities in the instrumentation function. The goal is

to collect the ordering and synchronization in the trace file,

as well as to filter the trace between the positions of before-

and-after pairs. The instrumentation at the lock execution

points needs to maintain one counter per lock. At the lock

before-acquiring position, the instrumentation annotates the

lock ID (typical lock address) in the trace, and stops

collecting the trace. At the lock after-acquiring position, the

instrumentation gathers the value of the lock’s

corresponding counter in the trace and restarts the trace

collection. At the lock before-releasing position, the

instrumentation annotates the lock ID in the trace and again

stops trace collection. More importantly, the lock’s counter

will be increased by one at this position and tagged in the

trace again, which means that the next thread order will be

allowed to enter the critical region. The increment need not

be re-protected by a new lock in the instrumentation since

this operation is still under the protection of an unreleased

application lock. At the lock after-releasing point, the

instrumentation needs to do no more work than just

restarting trace collection. The instrumentation at the

barrier execution point is simpler than at the lock, and only

needs a variable per barrier, which is initialized at the

barrier’s before-initializing position as the total number of

threads that the barrier defends against. At the barrier’s

before-entering position, the instrumentation tags both the

barrier ID (typical barrier address) and the number of

racing threads in the trace, and stops the trace collection.

After all threads reach the barrier, the instrumentation

restarts the trace collection at the barrier’s after-leaving

position. In this way, the dynamic instruction trace between

the pair of before-and-after positions will be filtered out in

the final trace file. Only the lock ordering and barrier

synchronization tags are annotated in the trace. Figure 4

Figure 2 Conceptual scheme of methodology

…
initialize lock
…
code in non-critical region
…
acquire lock
…
code in critical region
…
release lock
…
code in non-critical region

before-initializing

before-acquiring

after-acquiring

before-releasing

after-releasing

…
initialize barrier
…
code in the race for barrier
…
enter barrier
…
barrier wait
…
leave barrier
…

before-initializing

before-entering

after-leaving

(a) critical region

(b) barrier

Figure 3 Key execution points to be instrumented

shows a simple example trace with locks and barriers,

collected from the Pthread program by the instrumentation

through Pin [19]. Each entry in the trace consists of three

fields: operation, size and address. In the annotation entry,

the operation field gives the type of the execution point,

and the size field represents the lock order and the number

of threads per barrier, respectively.

4.2 Precise trace-replaying

To provide the precise order consistency with the trace

collection, the trace-driven simulator must control the trace

replay progress according to the order and synchronization

tags annotated in the trace, as well as the stimulus to the

memory system. To achieve the first goal, the simulator

needs to build an internal counter and a mapping table to

track the lock order and the barrier synchronization. We

propose that the precise trace-replaying simulation in a

multi-thread application runs as follows. The simulator runs

all traces on the cores at the beginning as the traditional

trace-driven tools until any thread meets the annotated tags

(i.e. lock acquiring, lock release, and barrier). At that time,

the simulator compares the internal state with the tag to

determine if the next trace segment from the trace file will

be run, instead of blindly continuing to run through the

trace. This means that the lock and barrier operations are

determined by both the tags and the current simulation

status. For example, if the simulation reaches a lock

acquiring tag, the decision of whether to enter the critical

region or not is made by the comparison result of the

internal order counter and the tagged lock order.

To achieve the second goal, the simulator cannot

merely stop the instruction fetching from the trace in the

situation in which the thread should be waiting for the lock,

but loads the proper trace into the pipeline since the cache

hierarchy (particularly the cache-coherent protocol) needs

the stimulus from the trace filtered out at the collection

stage. We propose building a trace piece template [5] since

the traces at the lock and the barrier execution points are

always uniform and repeated. These traces can be

reproduced from the template. Furthermore, the simulator

can build an internal table mapping trace to thread to

simulate the non-uniform memory access in a CMP when

cores have different distances to the memory controller.

4. EVALUATION
In order to show the effect of the proposed

methodology when evaluating multithread applications, we

implemented the instrumentation function using Pin [19]

and a cycle-accurate trace-driven memory scheduling

simulator (re-written from the simulator in [10]). We used a

subset of the PARSEC [20] benchmark with locks and

barriers, where each benchmark runs on 8 threads in

parallel. We collected traces of 100 million instructions per

thread at the same execution period in the region of interest

(ROI). Then, we fed the traces to memory scheduling

simulators twice. The first time, we used the proposed

trace-replaying method to simulate four memory

scheduling algorithms: FR-FCFS [1], ATLAS [8], STFM

[9] and PA-BS [10]. These scheduling algorithms have

already been evaluated by multi-programmed workloads in

[8, 9, 10], where the trace misplacement as described does

not exist. We re-evaluated them in the context of

multithread workloads to show how the trace-misplacement

problem impacts the evaluation of multithread applications.

The second time, we ignored the disorder of critical regions

and the synchronization of barriers in the trace and reran

the simulation. In both simulations we measured three

major metrics: weighted IPC speedup, harmonic mean of

int thread_func(…)

{

 …

 // code segment A

 pthread_barrier_wait(&bar);

 // code segment B

 pthread_spin_lock(&lock);

 …

 //code in critical region

 …

 pthread_spin_unlock(&lock);

 // code segment D

 pthread_barrier_wait(&bar);

 //code segment E

 …

}

(a) Pthread lock/unlock/barrier (b) thread 0 trace (c) thread 1 trace

NonMem 5 -

RD 2B Load.addr

WR 2B Store.addr

LockAcq No.2 Lock.addr

… … …
RD 2B Load.addr

WR 4B Store.addr

… … …
LockRls No.3 Lock.addr

… … …
RD 4B Load.addr

… … …

… … …

BarWait 2 Bar.addr

BarWait 2 Bar.addr

NonMem 5 -

RD 2B Load.addr

WR 2B Store.addr

… … …

… … …

NonMem 5 -

RD 2B Load.addr

WR 2B Store.addr

… … …

NonMem 5 -

RD 2B Load.addr

WR 2B Store.addr

LockAcq No3 Lock.addr

… … …
RD 2B Load.addr

WR 4B Store.addr

… … …
LockRls No.4 Lock.addr

… … …
RD 4B Load.addr

… … …

… … …

BarWait 2 Bar.addr

BarWait 2 Bar.addr

NonMem 5 -

RD 2B Load.addr

WR 2B Store.addr

… … …

… … …

NonMem 5 -

RD 2B Load.addr

WR 2B Store.addr

… … …

Figure 4 Simple example trace with locks and barriers

IPC, and CPU throughput, which are commonly used in the

memory scheduling research area. Finally, we compared

the two sets of metric results. Although these metrics do

not precisely show which scheduling algorithm is the best

one in multithread applications, we can use them to prove

the remarkable error caused by trace-misplacement existing

in two simulation methodologies. Figure 5 shows the

normalized error between them. As can be seen, each

metric has an error rate of nearly 10%. Putting four

memory scheduling algorithms together, the geometric

average error on weighted IPC speedup, harmonic mean of

IPC, and CPI throughput are 10.22%, 9.30%, and 10.22%,

respectively. This experiment shows that if we do not avoid

the trace misplacement in the trace-driven simulation in

multi-thread applications, the errors in the metric will be

large enough to lead to erroneous conclusions, thus

misleading the memory scheduling algorithm design.

5. COVERAGE AND OPPORTUNITIES
Our proposed methodology covers memory scheduling

simulation in a multithread application, which contains the

clear encapsulation of lock and barrier operations, such as

spinlock/mutex in the low level programming model

Pthread. For a multithread application using a high level

programming model, such as OpenMP, the instrumentation

technology will find these important execution points and

our methodology can also be applied to them. However, the

lock and synchronization embedded by a user in application

code, such as the condition variable in Pthread, needs more

care to select the execution points to be instrumented. It

may be additional work for the researcher to analyze the

application code, but this is the best one can do to obtain an

opportunity to study a new memory system in it.

Non-determinism [12] in simulating a multithread

application is an important challenge to deal with. One of a

number of reasons is that the system scheduling and traffic

on a cache-coherent system may cause a different order of

threads acquiring locks. For multithread applications with

dynamic load balance, the order of locks determines the

amount of work performed by threads when they leave

critical regions. It is hard, even impossible work to

faithfully replay changes in the amount of work in trace-

driven simulation. Thus, for given traces captured from

these applications in a real system, recording the order of

lock events and replaying them is a necessary and correct

method regarding the traces after releasing locks. The

trace-driven simulation in our methodology completely

eliminates non-determinism since the blocks, which consist

of the instructions enclosed by a pair of execution points in

a trace, are replayed in the same order as they are captured.

Thus, this deterministic character ensures that a new

memory scheduling algorithm or a new memory system is

under the stimulus from the appropriate traces, instead of

from the misplaced. The determinism in our methodology

opens a door to study such applications’ inter-thread

behavior on new memory systems through trace-driven

tools. However, for multithread applications with static

load balance, in which changes to the order of locks will

not impact the amount of work of each thread, the

deterministic replay methodology will lose opportunities to

study acceleration efforts on non-critical threads. It will be

future work to differentiate these two types of multithread

applications on-the-fly in trace-driven simulations.

6. RELATED WORK
Because of the reasons mentioned in Section 1, in the

past few years, memory scheduling studies [1, 8, 9, 10, 11]

have commonly used the trace-driven methodology to

evaluate proposed scheduling algorithms in multi-program

applications. Since the multi-programs running in multi-

core systems do not need precise inter-program ordering

and synchronization, the trace-driven simulation becomes

the preferred methodology to evaluate the proposed

memory scheduling algorithm. An appropriate policy rule

to prioritize multi-program’s memory access in the traces

will remove [6, 7] the interference and contention in shared

resources. This misplacement represents the precise effect

of the memory scheduling algorithm in multi-program

applications. However, the multithread application has

inherent restrictions on memory access interference among

threads because of inter-thread actions, and the simulation

should not misplace the trace regardless of the scheduling

algorithm. A very recent study [14], which uses full

processor and memory controller simulation to evaluate the

effect of memory scheduling and devise new memory

scheduling algorithms for multithreaded applications, has

taken into account effects of memory scheduling in parallel

multithreaded applications. This paper models threads

waiting for locks and barrier synchronization events. As

such it provides a complementary method that avoids trace

misplacement by simulating the synchronization that

happens between threads.

Figure 5 Normalized error between two simulations

In a recent trace-driven simulation study of multithread

applications [13], a cooperative mechanism is proposed in

which a methodology of combining execution-driven

simulation and trace-driven simulation provides

complementary ways to resolve the weakness of trace-

driven simulation in scheduling the parallel code execution

in different threads. In memory scheduling research areas,

sampling simulation [17, 18] is widely used to select the

representative memory access traces as the stimulus. In this

sense, the number of threads is always constant (equal to

the total number of cores); therefore, there is no need for

dynamic thread scheduling.

An emergent variant of the trace-driven simulation in

multithread application is the frameworks using dynamic

binary instrumentation tools or a functional emulator to

feed the “online-trace” to a special target simulation model.

CMP$im [15] belongs to this type of simulation in

multithread applications. Under the help of an AMD

functional engine, COTSon [16] decouples the functional

and timing simulation. Compared with the pure trace-

driven simulation, this approach saves disk space

requirements of the trace file in the cost of simulation run

time, since each exploration in the design space will re-run

the native workload plus the simulation.

7. CONCLUSION AND FUTURE WORK
The methodology presented in this paper puts the

emphasis on how to avoid trace misplacement in

multithread applications when simulating the memory

scheduling algorithm. We propose annotating the lock

order and barrier synchronization in the trace to replay the

deterministic inter-thread actions in the simulation. The

experiment shows that without our methodology the

accuracy of memory scheduling simulation in parallel

multithread applications will be impacted by the

remarkable errors. To the best of our knowledge, this is the

first attempt to maintain the consistency order of trace

pieces in simulation to ensure correct interference in a

memory system.

Finally, the described methodology provides a reliable

method to simulate the memory scheduling algorithm in a

multithread application. In the future, more complex and

important execution points can be instrumented, and the

method to annotate behaviors of applications, such as

dynamic or static load balance, from a higher level will be

studied.

8. ACKNOWLEDGMENTS
We would like to thank all reviewers for improving

this paper. This work is partially supported by the National

Science Foundation of China under grant numbers

61003062, 60903046, 60925009 and 60921002, and the

National Basic Research Program of China (973 Program)

under grant No. 2011CB302502.

9. REFERENCES
[1] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D.

Owens. 2000. Memory access scheduling. In Proceedings of

the 27th International Symposium on Computer Architecture,

pp.128-138, June 2000.

[2] J. A. Joao, M. A. Suleman, O. Mutlu, and Y. N. Patt. 2012.

Bottleneck identification and scheduling in multithreaded

applications. In Proceedings of the 17th International

Conference on Architectural Support for Programming

Languages and Operating Systems (ASPLOS '12). ACM,

New York, NY, USA, 223-234.

[3] M. A. Suleman, O. Mutlu, M. K. Qureshi, and Y. N. Patt.

2009. Accelerating critical section execution with

asymmetric multi-core architectures. In Proceedings of the

14th International Conference on Architectural Support for

Programming Languages and Operating Systems (ASPLOS

'09). ACM, New York, NY, USA, 253-264.

[4] R. A. Uhlig and T. N. Mudge. 1997. Trace-driven memory

simulation: a survey. ACM Comput. Surv. 29, 2 (June 1997),

128-170.

[5] M. Xu, R. Bodik, and M. D. Hill. 2003. A "flight data

recorder" for enabling full-system multiprocessor

deterministic replay. In Proceedings of the 30th Annual

International Symposium on Computer Architecture (ISCA

'03). ACM, New York, NY, USA, 122-135.

[6] H.-Y. Cheng, C.-H. Lin, J. Li, and C.-L. Yang. 2010.

Memory Latency Reduction via Thread Throttling. In

Proceedings of the 2010 43rd Annual IEEE/ACM

International Symposium on Microarchitecture (MICRO

'43). IEEE Computer Society, Washington, DC, USA, 53-64.

[7] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. 2010.

Fairness via source throttling: a configurable and high-

performance fairness substrate for multi-core memory

systems. In Proceedings of the 15th Edition of ASPLOS on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS '10). ACM, New York, NY,

USA, 335-346.

[8] Y. Kim, D. Han, O. Mutlu, and M. H.-Balter. 2010. ATLAS:

A scalable and high-performance scheduling algorithm for

multiple memory controllers, In IEEE 16th International

Symposium on High Performance Computer Architecture

(HPCA), vol., no., pp.1-12, 9-14 Jan. 2010

[9] O. Mutlu and T. Moscibroda. 2007. Stall-Time Fair Memory

Access Scheduling for Chip Multiprocessors. In Proceedings

of the 40th Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO 40). IEEE Computer Society,

Washington, DC, USA, 146-160.

[10] O. Mutlu and T. Moscibroda. 2008. Parallelism-Aware Batch

Scheduling: Enhancing both Performance and Fairness of

Shared DRAM Systems. In Proceedings of the 35th Annual

International Symposium on Computer Architecture (ISCA

'08). IEEE Computer Society, Washington, DC, USA, 63-74

[11] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. 2006.

Fair Queuing Memory Systems. In Proceedings of the 39th

Annual IEEE/ACM International Symposium on

Microarchitecture (MICRO 39). IEEE Computer Society,

Washington, DC, USA, 208-222.

[12] A. R. Alameldeen and D. A. Wood. 2003. Variability in

Architectural Simulations of Multi-Threaded Workloads. In

Proceedings of the 9th International Symposium on High-

Performance Computer Architecture (HPCA '03). IEEE

Computer Society, Washington, DC, USA, 7-.

[13] A. Rico, A. Duran, F. Cabarcas, Y. Etsion, A. Ramirez, and

M. Valero. 2011. Trace-driven simulation of multithreaded

applications. In Proceedings of the IEEE International

Symposium on Performance Analysis of Systems and

Software (ISPASS '11). IEEE Computer Society,

Washington, DC, USA, 87-96.

[14] E. Ebrahimi, R. Miftakhutdinov, C. Fallin, C. J. Lee, J. A.

Joao, O. Mutlu, and Y. N. Patt. 2011. Parallel application

memory scheduling. In Proceedings of the 44th Annual

IEEE/ACM International Symposium on Microarchitecture

(MICRO-44 '11). ACM, New York, NY, USA, 362-373.

[15] A. Jaleel, R. S. Cohn, C.-K. Luk, and B. Jacob. 2008.

CMP$im: A Pin-based on-the-fly multi-core cache simulator.

In the Fourth Annual Workshop on Modeling, Benchmarking

and Simulation (MoBS), co-located with ISCA'2008

[16] E. Argollo, A. Falcon, P. Faraboschi, M. Monchiero, and D.

Ortega. 2009. COTSon: infrastructure for full system

simulation. SIGOPS Oper. Syst. Rev. 43, 1 (January 2009),

52-61.

[17] T. Sherwood, E. Perelman, G. Hamerly, and B. Calder. 2002.

Automatically characterizing large scale program behavior.

In Proceedings of the 10th International Conference on

Architectural Support for Programming Languages and

Operating Systems (ASPLOS-X). ACM, New York, NY,

USA, 45-57.

[18] H. Patil, R. Cohn, M. Charney, R. Kapoor, A. Sun, and A.

Karunanidhi. 2004. Pinpointing Representative Portions of

Large Intel Itanium Programs with Dynamic Instrumentation.

In Proceedings of the 37th Annual IEEE/ACM International

Symposium on Microarchitecture (MICRO 37). IEEE

Computer Society, Washington, DC, USA, 81-92.

[19] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G.

Lowney, S. Wallace, V. J. Reddi, and K. Hazelwood. 2005.

Pin: building customized program analysis tools with

dynamic instrumentation. In Proceedings of the 2005 ACM

SIGPLAN Conference on Programming Language Design

and Implementation (PLDI '05). ACM, New York, NY,

USA, 190-200.

[20] C. Bienia, S. Kumar, J. P. Singh, and K. Li. 2008. The

PARSEC benchmark suite: characterization and architectural

implications. In Proceedings of the 17th International

Conference on Parallel Architectures and Compilation

Techniques (PACT '08). ACM, New York, NY, USA, 72-81.

