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ABSTRACT 

Along with commercial chip-multiprocessors (CMPs) 

integrating more and more cores, memory systems are 

playing an increasingly important role in multithread 

applications. Currently, trace-driven simulation is widely 

adopted in memory system scheduling research, since it is 

faster than execution-driven simulation and does not 

require data computation. On the contrary, due to the same 

reason, its trace replay for concurrent thread execution 

lacks data information and contains only addresses, so 

misplacement occurs in simulations when the trace of one 

thread runs ahead or behind others. This kind of distortion 

can cause remarkable errors during research. As shown in 

our experiment, trace misplacement causes an error rate of 

up to 10.22% in the metrics, including weighted IPC 

speedup, harmonic mean of IPC, and CPI throughput. This 

paper presents a methodology to avoid trace misplacement 

in trace-driven simulation and to ensure the accuracy of 

memory scheduling simulation in multithread applications, 

thus revealing a reliable means to study inter-thread actions 

in memory systems.   

Categories and Subject Descriptors 

B.3.3 [Memory Structures]: Performance Analysis and 

Design Aids—simulation; C.4 [Computer Systems 

Organization]: Performance of Systems—measurement 

techniques; I.6 [Computing Methodologies]: Simulation 

and Modeling 

General Terms 

Experimentation, Measurement  

Keywords 

Trace-driven simulation, memory scheduling algorithm, 

trace misplacement, multithread application. 

1. INTRODUCTION 
As commercial chip-multiprocessors (CMPs) integrate 

more and more cores, memory system studies, including 

data hierarchy, memory scheduling, and DRAM 

architecture, are playing an increasingly important role in 

computer architecture. Memory system research, especially 

memory scheduling algorithms which handle requests to 

the major shared resource DRAM, is mainly based on 

simulation. Since the execution of benchmarks in a real 

system can hardly evaluate every design point in the 

memory system, and it is impossible to implement the 

salient points by prototyping the innovations at the early-

research stage, the software simulator becomes a common 

tool to explore the memory system’s design space.  

However, simulating such a memory system through 

accurate execution-driven tools is difficult. The simulation 

for the memory scheduling, which aims to improve the 

memory system performance by prioritizing requests to the 

shared resources in DRAM (i.e., channel/rank/bank/row) [1, 

8, 9, 10, 11], is increasingly challenging since the number 

of integrated cores and concurrent threads in CMP systems 

keep growing, as does data size.  

Unlike execution-driven simulation, trace-driven 

simulation takes the program instructions and address 

traces as the input. Without the heavy burden of 

computation and data movements, the trace-driven 

simulator often runs faster and gives the researcher more 

flexibility to employ simulation experiments. Furthermore, 

in the memory scheduling research area, trace-driven 

simulation is very  suitable for memory scheduling studies 

since memory access traces can be produced by workloads 

in platforms with different ISAs to simulate the memory 

system performance in a variety of machines, as well as in 

heterogeneous systems, examples of which are described in 

[2, 3]. 

However, when used to simulate memory scheduling 

algorithms for multi-threaded workloads, a trace-driven 

tool also has an inherent limitation. The trace-driven 

simulation cannot capture or model inter-thread actions in 

parallel multithread applications, including inter-thread 

order and synchronizations. Meanwhile, the goals of the 

memory scheduling algorithm are to resolve the memory 

contention or interference, and to enhance both the 

performance and the fairness of a shared DRAM system by 

arbitrating the memory accesses from multi-threads [10]. 



When a memory scheduling simulator replays a multithread 

application trace, the key problems in the simulation are: 

since no data value in the trace can be used to determine the 

inter-thread behavior, 1) the thread’s actions in the 

interleaved critical regions are hardly aligned with the trace 

collection process, and 2) barriers do not take effect to 

force asynchronous threads to act as if they were 

synchronous. In this sense, the traces will be skewed and 

misplaced. The trace misplacement refers to a situation that 

occurs when a misaligned lock acquiring order or an 

ineffective barrier causes a thread/core to run ahead or 

behind others in trace replaying. We define misplaced 

interference as interference from a thread running a 

misplaced trace. When the trace misplacement occurs, the 

memory system evaluated with the proposed scheduling 

algorithm will be stimulated by the pressure of misplaced 

conflict and interference in the shared resource, such as 

memory channels, row buffers, and DRAM banks. 

Moreover, misplaced multi-traces may reflect a particular 

disorder that may not even occur in the real system. 

Consequently, the trace-driven simulation will report a 

misleading evaluation metric result for a proposed new 

memory scheduling algorithm in multi-thread applications. 

As shown in our experiment (see the details in section 4), 

trace misplacement causes maximum error rate of 10.22% 

in terms of the metrics: weighted IPC speedup, harmonic 

mean of IPC, and CPI throughput. 

Our goal is to design a methodology that maintains 

inter-thread ordering and synchronization consistency in 

trace capturing and replaying, and improves the preciseness 

of memory scheduling trace-driven simulation in parallel 

multithread applications. 

This paper makes contributions as follows. We 

propose a simple methodology to avoid trace misplacement 

when simulating a memory scheduling algorithm in parallel 

multithread applications. At the trace collection time, we 

define some critical instrumentation points to capture the 

inter-thread actions in a multithread application memory 

trace, especially through intercepting the lock acquiring 

order and barrier synchronization in the execution. Then, at 

the trace-replaying time, the lock acquiring order and 

barrier synchronization are precisely reproduced. 

Additionally, the simulator injects an appropriate pre-

written instruction trace generated from the template into 

the execution points. This results in the trace replay not 

skewing the contention in the shared resources. This 

simulation methodology takes full advantage of the existing 

instrumentation technology and trace-driven simulation, 

opens a new opportunity to simplify the inter-thread 

ordering and synchronization in trace capturing and 

replaying, and helps to improve the precision of memory 

scheduling trace-driven simulation in parallel multithread 

applications. 

The rest of this paper is organized as follows: Section 

2 gives a description of our motivation, we present the 

details of our methodology in Section 3, and we show our 

experiments and results in Section 4. Section 5 is a 

discussion of the coverage and opportunity, and Section 6 

describes related work. Finally, we conclude our paper with 

the future possible work in Section 7. 

2. MOTIVATION 
The lock and barrier are commonly used in multi-

threaded applications to protect a critical region and to 

avoid synchronization problems, respectively. The lock 

ensures the critical region’s mutual exclusion, which means 

that at any given time only one thread acquires the lock 

successfully and executes the critical region, and other 

threads attempting to access the same lock must wait until 

the lock is released. Thus, the traces produced from the 

execution of the critical region have the same global order 

as the lock acquiring. Figure 1 (a) shows a common 

scenario of the lock in a multithreaded application: 

operations between a producer thread and a consumer 

thread. In such type of operations, the data processed by the 

producer thread 1 are transferred to the consumer thread 0 

through a shared list. The insertion and removal of the 

ready data are protected by the critical region to prevent 

competition that will corrupt the list. In that execution, the 

consumer thread 0 is always waiting for the producer 

thread 1 to fulfill the list. In the example, thread 0 acquires 

a lock at t0, and runs the critical region code to fetch the 

element from the list, but finds that the list is empty, then 

releases the lock at t1. Thread 1 acquires the lock at t2, 

injects a new element into the list, and then releases the 

lock at t4. In that process, thread 0 again tries to acquire the 

lock at t3, but waits to enter the critical region until t4, then 

fetches the new element from the list, and finally releases 

the lock at t5 and begins to process it. In the trace replay 

stage, since there is no data value in the trace of the critical 

region, the simulator will not determine if the list is empty 

or not and just blindly runs through the trace. Thus, the 

interactions between the two threads recorded in the trace 

will not be precisely reproduced in the simulation. For 

example, in the simulation, if thread 0 runs faster than 

thread 1, thread 0 will acquire the lock and successfully 

enter the critical region twice, then begin to run trace B in 

which thread 0 processes a new element. But thread 1 has 

not acquired the lock and has not entered the critical region 

to insert the new element into the list. This disorder of the 

critical regions will never occur in a real machine since the 

consumer will not process a new element before the 

producer generates it. From the memory scheduling point 

of view, the interference in the shared memory resources 

occurring in the element processing progress (trace A) and 

the element generation (trace B) will be lost when the 

thread 0 trace is replayed ahead of the thread 1 trace. This 

is trace misplacement. The worse situation is that once 



trace misplacement occurs, misplacement will increasingly 

take place in the remaining parts of the trace files. 

Fortunately, however, if we maintain the same lock-

acquiring order as in the trace capturing process, the 

simulation will ensure a correct critical region order. Thus, 

the interference in the memory shared resource will occur 

on trace A and trace B. Otherwise, the stimulus to memory 

scheduling algorithm is skewed and does not represent the 

precise interference through the traces.  

A barrier in multi-thread application traces is similar 

with the lock. Since a thread that reaches a barrier must be 

blocked until all other threads reach the barrier, this 

implicitly maintains a global order between the traces on 

both sides of the barrier. This order must be reproduced in 

the simulation. Figure 1 (b) shows an example of two 

threads under the synchronization of a barrier. The trace D 

behind the barrier must be replayed after trace A when all 

threads reach the barrier. No memory scheduling algorithm 

will break this restriction, which means the interference in 

the shared resource to be optimized by memory scheduling 

will always exist between trace A and B, or between trace 

C and trace D. It is impossible for the memory scheduling 

algorithm to attempt to improve system speedup by 

optimizing the interference between trace A and D.  

From these examples, we can conclude that the trace-

driven simulation of memory scheduling in a multi-

threaded application must ensure the inter-thread order and 

synchronization consistency with the trace producing 

process to maintain the correct interference and contention 

in the shared memory resources.  

3. METHODOLOGY 
This paper proposes a new methodology that allows 

trace-driven tools to precisely simulate the memory 

scheduling algorithm in a multithread application. To 

achieve this goal, we designed two components to ensure 

the inter-thread order consistency between the trace 

collecting and trace replaying. The first component is a set 

of instrumentation positions that recognize two important 

types of execution points: the lock execution point and the 

barrier execution point. At these execution points, the 

instrumentation annotates the inter-thread ordering 

sequence in the trace. The second component is a precise 

trace replaying method in a trace-driven tool. This method 

aims to eliminate the trace skew or misplacement in the 

simulation, as well as to inject an appropriate dynamic 

instruction trace into the simulation model according to the 

inter-thread action information.  

Figure 2 illustrates the conceptual scheme of the 

methodology, which consists of two major steps from top 

to bottom. The first step collects the workload’s traces by 

the instrumentation, which particularly monitors the lock 

and barrier execution points in the dynamic instruction 

stream. The application is instrumented at the key positions 

to record the inter-thread ordering and synchronization, 

which are annotated in the trace. The second step feeds the 

trace, including the ordering and synchronization 

annotation, into a memory scheduling simulation model, 

along with a set of pre-analyzed trace piece templates. The 

order and synchronization are faithfully maintained by the 

simulator. When the simulation reaches the annotated 

execution point, the simulator assembles the annotation into 

the trace piece template and injects the appropriate 

annotated trace pieces into the simulation according to the 

ordering requirement. By this means, the simulator avoids 

the misplacement-caused disorder of critical region traces 

and the synchronization problem. Thus, the memory 

scheduling simulation will be stimulated by the precise 

interference among threads.  

The following two sections will describe the detailed 

implementations of the two components in the 

methodology. 

4.1 Instrumentation positions 

Thanks to the compilation technology, we can 

instrument additional functions into any workload 

execution points, statically or dynamically. Our proposed 

methodology makes full use of the instrumentation 

technology, and annotates the important ordering and 

synchronization information in the trace. Two important 

execution points need be annotated: the lock execution 

point and the barrier execution point, which are in charge 

Trace B

Trace A

non-critical region       critical region      acquire lock      release lock

Thread 0

Thread 1

t0 t1 t2 t3 t4 t5

time

    

Trace A

Trace D

Trace C

Thread 0

Thread 1

t0 t1 t2

time

Trace B

code in racing       waiting for barrier      enter barrier      leave barrier

 

(a)  critical region and lock                                                       (b)  barrier and waiting 

Figure 1  Trace alignment determined by lock and barrier 



of two types of trace misplacement: the disorder of the 

critical regions and the thread’s synchronization problem, 

respectively.  

Figure 3 shows the instrumentation positions in the 

workload code to annotate the execution points discussed 

above. Since there are two kinds of lock operations, the 

lock execution points consist of the acquiring lock and the 

releasing lock. Any point has one entrance and one exit. 

Thus, there are a total of four instrumentation positions for 

the lock: before-acquiring, after-acquiring, before-

releasing, and after-releasing. The before-acquiring 

represents the potential start of waiting on a lock when this 

thread fails acquisition, while the after-acquiring means the 

deterministic end of waiting on a lock when this thread 

wins acquisition. On the contrary, the before-releasing 

serves as the potential end of waiting on a lock if other 

threads are acquiring a lock in the race, while the after-

releasing plays a role of expressing the deterministic end of 

waiting on a lock if one of the other threads wins the 

competition. The barrier instrumentation positions consist 

of before-entering and after-leaving. The before-entering 

indicates the potential waiting on a barrier if the thread 

wins the race, while the after-leaving hints at the 

deterministic start of the race for the next barrier. 

Additionally, both the lock and the barrier have the before-

initializing positions, which are used by the instrumentation 

to build an internal data structure for the trace collection. 

All these execution points have different annotation 

responsibilities in the instrumentation function. The goal is 

to collect the ordering and synchronization in the trace file, 

as well as to filter the trace between the positions of before-

and-after pairs. The instrumentation at the lock execution 

points needs to maintain one counter per lock. At the lock 

before-acquiring position, the instrumentation annotates the 

lock ID (typical lock address) in the trace, and stops 

collecting the trace. At the lock after-acquiring position, the 

instrumentation gathers the value of the lock’s 

corresponding counter in the trace and restarts the trace 

collection. At the lock before-releasing position, the 

instrumentation annotates the lock ID in the trace and again 

stops trace collection. More importantly, the lock’s counter 

will be increased by one at this position and tagged in the 

trace again, which means that the next thread order will be 

allowed to enter the critical region. The increment need not 

be re-protected by a new lock in the instrumentation since 

this operation is still under the protection of an unreleased 

application lock. At the lock after-releasing point, the 

instrumentation needs to do no more work than just 

restarting trace collection. The instrumentation at the 

barrier execution point is simpler than at the lock, and only 

needs a variable per barrier, which is initialized at the 

barrier’s before-initializing position as the total number of 

threads that the barrier defends against. At the barrier’s 

before-entering position, the instrumentation tags both the 

barrier ID (typical barrier address) and the number of 

racing threads in the trace, and stops the trace collection. 

After all threads reach the barrier, the instrumentation 

restarts the trace collection at the barrier’s after-leaving 

position. In this way, the dynamic instruction trace between 

the pair of before-and-after positions will be filtered out in 

the final trace file. Only the lock ordering and barrier 

synchronization tags are annotated in the trace. Figure 4 

 

Figure 2  Conceptual scheme of methodology  
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Figure 3  Key execution points to be instrumented  



shows a simple example trace with locks and barriers, 

collected from the Pthread program by the instrumentation 

through Pin [19]. Each entry in the trace consists of three 

fields: operation, size and address. In the annotation entry, 

the operation field gives the type of the execution point, 

and the size field represents the lock order and the number 

of threads per barrier, respectively. 

4.2 Precise trace-replaying 

To provide the precise order consistency with the trace 

collection, the trace-driven simulator must control the trace 

replay progress according to the order and synchronization 

tags annotated in the trace, as well as the stimulus to the 

memory system. To achieve the first goal, the simulator 

needs to build an internal counter and a mapping table to 

track the lock order and the barrier synchronization. We 

propose that the precise trace-replaying simulation in a 

multi-thread application runs as follows. The simulator runs 

all traces on the cores at the beginning as the traditional 

trace-driven tools until any thread meets the annotated tags 

(i.e. lock acquiring, lock release, and barrier). At that time, 

the simulator compares the internal state with the tag to 

determine if the next trace segment from the trace file will 

be run, instead of blindly continuing to run through the 

trace. This means that the lock and barrier operations are 

determined by both the tags and the current simulation 

status. For example, if the simulation reaches a lock 

acquiring tag, the decision of whether to enter the critical 

region or not is made by the comparison result of the 

internal order counter and the tagged lock order.  

To achieve the second goal, the simulator cannot 

merely stop the instruction fetching from the trace in the 

situation in which the thread should be waiting for the lock, 

but loads the proper trace into the pipeline since the cache 

hierarchy (particularly the cache-coherent protocol) needs 

the stimulus from the trace filtered out at the collection 

stage. We propose building a trace piece template [5] since 

the traces at the lock and the barrier execution points are 

always uniform and repeated. These traces can be 

reproduced from the template. Furthermore, the simulator 

can build an internal table mapping trace to thread to 

simulate the non-uniform memory access in a CMP when 

cores have different distances to the memory controller. 

4. EVALUATION 
In order to show the effect of the proposed 

methodology when evaluating multithread applications, we 

implemented the instrumentation function using Pin [19] 

and a cycle-accurate trace-driven memory scheduling 

simulator (re-written from the simulator in [10]). We used a 

subset of the PARSEC [20] benchmark with locks and 

barriers, where each benchmark runs on 8 threads in 

parallel. We collected traces of 100 million instructions per 

thread at the same execution period in the region of interest 

(ROI). Then, we fed the traces to memory scheduling 

simulators twice. The first time, we used the proposed 

trace-replaying method to simulate four memory 

scheduling algorithms: FR-FCFS [1], ATLAS [8], STFM 

[9] and PA-BS [10]. These scheduling algorithms have 

already been evaluated by multi-programmed workloads in 

[8, 9, 10], where the trace misplacement as described does 

not exist. We re-evaluated them in the context of 

multithread workloads to show how the trace-misplacement 

problem impacts the evaluation of multithread applications. 

The second time, we ignored the disorder of critical regions 

and the synchronization of barriers in the trace and reran 

the simulation. In both simulations we measured three 

major metrics: weighted IPC speedup, harmonic mean of 

int thread_func(…)

{   

     …

     // code segment A

     pthread_barrier_wait(&bar);

     // code segment B

     pthread_spin_lock(&lock);

     …

     //code in critical region

     …

     pthread_spin_unlock(&lock);

     // code segment D

     pthread_barrier_wait(&bar);

     //code segment E

     …

}

(a) Pthread lock/unlock/barrier (b) thread 0 trace (c) thread 1 trace
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Figure 4  Simple example trace with locks and barriers 



IPC, and CPU throughput, which are commonly used in the 

memory scheduling research area. Finally, we compared 

the two sets of metric results. Although these metrics do 

not precisely show which scheduling algorithm is the best 

one in multithread applications, we can use them to prove 

the remarkable error caused by trace-misplacement existing 

in two simulation methodologies. Figure 5 shows the 

normalized error between them. As can be seen, each 

metric has an error rate of nearly 10%. Putting four 

memory scheduling algorithms together, the geometric 

average error on weighted IPC speedup, harmonic mean of 

IPC, and CPI throughput are 10.22%, 9.30%, and 10.22%, 

respectively. This experiment shows that if we do not avoid 

the trace misplacement in the trace-driven simulation in 

multi-thread applications, the errors in the metric will be 

large enough to lead to erroneous conclusions, thus 

misleading the memory scheduling algorithm design. 

5. COVERAGE AND OPPORTUNITIES 
Our proposed methodology covers memory scheduling 

simulation in a multithread application, which contains the 

clear encapsulation of lock and barrier operations, such as 

spinlock/mutex in the low level programming model 

Pthread. For a multithread application using a high level 

programming model, such as OpenMP, the instrumentation 

technology will find these important execution points and 

our methodology can also be applied to them. However, the 

lock and synchronization embedded by a user in application 

code, such as the condition variable in Pthread, needs more 

care to select the execution points to be instrumented. It 

may be additional work for the researcher to analyze the 

application code, but this is the best one can do to obtain an 

opportunity to study a new memory system in it. 

Non-determinism [12] in simulating a multithread 

application is an important challenge to deal with. One of a 

number of reasons is that the system scheduling and traffic 

on a cache-coherent system may cause a different order of 

threads acquiring locks. For multithread applications with 

dynamic load balance, the order of locks determines the 

amount of work performed by threads when they leave 

critical regions. It is hard, even impossible work to 

faithfully replay changes in the amount of work in trace-

driven simulation. Thus, for given traces captured from 

these applications in a real system, recording the order of 

lock events and replaying them is a necessary and correct 

method regarding the traces after releasing locks. The 

trace-driven simulation in our methodology completely 

eliminates non-determinism since the blocks, which consist 

of the instructions enclosed by a pair of execution points in 

a trace, are replayed in the same order as they are captured. 

Thus, this deterministic character ensures that a new 

memory scheduling algorithm or a new memory system is 

under the stimulus from the appropriate traces, instead of 

from the misplaced. The determinism in our methodology 

opens a door to study such applications’ inter-thread 

behavior on new memory systems through trace-driven 

tools. However, for multithread applications with static 

load balance, in which changes to the order of locks will 

not impact the amount of work of each thread, the 

deterministic replay methodology will lose opportunities to 

study acceleration efforts on non-critical threads. It will be 

future work to differentiate these two types of multithread 

applications on-the-fly in trace-driven simulations.  

6. RELATED WORK 
Because of the reasons mentioned in Section 1, in the 

past few years, memory scheduling studies [1, 8, 9, 10, 11] 

have commonly used the trace-driven methodology to 

evaluate proposed scheduling algorithms in multi-program 

applications. Since the multi-programs running in multi-

core systems do not need precise inter-program ordering 

and synchronization, the trace-driven simulation becomes 

the preferred methodology to evaluate the proposed 

memory scheduling algorithm. An appropriate policy rule 

to prioritize multi-program’s memory access in the traces 

will remove [6, 7] the interference and contention in shared 

resources. This misplacement represents the precise effect 

of the memory scheduling algorithm in multi-program 

applications. However, the multithread application has 

inherent restrictions on memory access interference among 

threads because of inter-thread actions, and the simulation 

should not misplace the trace regardless of the scheduling 

algorithm. A very recent study [14], which uses full 

processor and memory controller simulation to evaluate the 

effect of memory scheduling and devise new memory 

scheduling algorithms for multithreaded applications, has 

taken into account effects of memory scheduling in parallel 

multithreaded applications. This paper models threads 

waiting for locks and barrier synchronization events. As 

such it provides a complementary method that avoids trace 

misplacement by simulating the synchronization that 

happens between threads. 

Figure 5  Normalized error between two simulations 

 



In a recent trace-driven simulation study of multithread 

applications [13], a cooperative mechanism is proposed in 

which a methodology of combining execution-driven 

simulation and trace-driven simulation provides 

complementary ways to resolve the weakness of trace-

driven simulation in scheduling the parallel code execution 

in different threads. In memory scheduling research areas, 

sampling simulation [17, 18] is widely used to select the 

representative memory access traces as the stimulus. In this 

sense, the number of threads is always constant (equal to 

the total number of cores); therefore, there is no need for 

dynamic thread scheduling.  

An emergent variant of the trace-driven simulation in 

multithread application is the frameworks using dynamic 

binary instrumentation tools or a functional emulator to 

feed the “online-trace” to a special target simulation model. 

CMP$im [15] belongs to this type of simulation in 

multithread applications. Under the help of an AMD 

functional engine, COTSon [16] decouples the functional 

and timing simulation. Compared with the pure trace-

driven simulation, this approach saves disk space 

requirements of the trace file in the cost of simulation run 

time, since each exploration in the design space will re-run 

the native workload plus the simulation. 

7. CONCLUSION AND FUTURE WORK 
The methodology presented in this paper puts the 

emphasis on how to avoid trace misplacement in 

multithread applications when simulating the memory 

scheduling algorithm. We propose annotating the lock 

order and barrier synchronization in the trace to replay the 

deterministic inter-thread actions in the simulation. The 

experiment shows that without our methodology the 

accuracy of memory scheduling simulation in parallel 

multithread applications will be impacted by the 

remarkable errors. To the best of our knowledge, this is the 

first attempt to maintain the consistency order of trace 

pieces in simulation to ensure correct interference in a 

memory system.  

Finally, the described methodology provides a reliable 

method to simulate the memory scheduling algorithm in a 

multithread application. In the future, more complex and 

important execution points can be instrumented, and the 

method to annotate behaviors of applications, such as 

dynamic or static load balance, from a higher level will be 

studied. 
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