
`

HaLock: Hardware-Assisted Lock Contention Detection
in Multithreaded Applications

Yongbing Huang†‡, Zehan Cui†‡, Licheng Chen†‡, Wenli Zhang†, Yungang Bao†, Mingyu Chen†
†State Key Laboratory of Computer Architecture, Institute of Computing Technology,

Chinese Academy of Sciences, Beijing, China
‡Graduate University of Chinese Academy of Sciences, Beijing, China

{huangyongbing, cuizehan, chenlicheng, zhangwl, baoyg, cmy}@ict.ac.cn

ABSTRACT
Multithreaded programming relies on locks to ensure the
consistency of shared data. Lock contention is the main reason of
low parallel efficiency and poor scalability of multithreaded
programs. Lock profiling is the primary approach to detect lock
contention. Prior lock profiling tools are able to track lock
behaviors but directly store profiling data into local memory
regardless of the memory interference on targeted programs.

In this paper, we find that the memory interference is non-
trivial and can significantly affect programs’ execution as thread
number increases. To address this problem, we propose a
hardware assisted lock profiling mechanism (HaLock) which
leverages a specific hardware memory tracing tool (HMTT) to
record large amount of profiling data with negligible overhead
and impact on even large scale multithreaded programs.

Experimental results show that HaLock incurs only about
14.8% additional L3 cache misses and 34.3% extra memory
requests for a lock-intensive workload (bodytrack of PARSEC
benchmark) with 512 threads, while the previous state of the art
low-overhead approach causes 25.9% additional L3 cache misses
and 73.8% additional memory requests. Compared with HaLock’s
profiling data, we find that the lock behaviors obtained by the
state of art lock profiling tools have substantial distortions,
resulting in non-negligible inaccuracy problems.

Categories and Subject Descriptors
C.4 [Performance of systems]: Measurement techniques,
performance attributes; D.1.3 [Programming techniques]:
Concurrent Programming--Parallel programming

General Terms
Design, Measurement, Performance

Keywords
Multithreading, Lock Contention, Memory Interference,
Performance Analysis, HMTT

1. INTRODUCTION
Multithreaded programming is the dominated programming

model on shared memory multicores platform. Recent research
[23] argues that coherence protocol which is regarded as the
primary reason of poor scalability of shared memory architecture,
is able to scale well up to even 512-core. Therefore, multithreaded
programming will probably still be the most popular
programming model for forthcoming many-core machines.

Since multithreaded applications use locks, such as mutex
locks of POSIX thread [13] library, to guard the consistency of
shared data, lock contention has long been considered as a key
impediment to applications’ scalability. For instance, Johnson et
al. [22] investigate four popular open source databases (Shore,
BerkeleyDB, MySQL, and PostgreSQL) on a multicore system,
and identify lock contention as the major bottleneck for scaling up
to 32 threads. Multithreaded programming relying on locks puts
programmers in a dilemma that coarse-grain locks significantly
degrade program’s performance and scalability due to lock
contention but fine-grain locks are error-prone, thus requiring
substantial development efforts. Therefore, profiling lock
information and diagnosing lock contention are still of great
interest. By identifying lock contention hotspots and shortening or
removing them, Johnson et al. [22] achieved 2-4 times
performance improvement.

Generally, a typical look profiling tool consists of two steps:
Firstly, it adopts either instrumentation or performance counter to
capture runtime lock information such as thread id, operation
types and time information [5, 12, 16]. Some tools may further
support advanced functionalities, such as thread filters or source
file filters [28]. Obliviously, collecting more information means
paying higher cost. Generally, instrumentation has higher cost but
is more flexible, while performance counter costs less but collects
less information. Secondly, it needs to record the profiling data
for offline analysis. To our best knowledge, almost all of the
current tools preserve profiling data in local memory buffers or
disks [2, 4, 5, 12, 15, 16, 28]. Basically, a profiling tool itself
should not significantly affect its target program’s execution.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
PACT’12, September 19-23, 2012, Minneapolis, Minnesota, USA.
Copyright 2012 ACM 978-1-4503-1182-3/12/09...$15.00.

253

`

However, writing large amount of data into memory will cause
additional cache pollution and extra memory pressures which may
significantly perturb the targeted program’s runtime behaviors
thereby resulting in distorted profiling, especially for memory
sensitive applications.

Sampling is an alternative method to reduce the profiling
overhead and the runtime interference. However, it is likely to
miss small critical sections [11, 16] which are also necessary to be
optimized for scalability [19]. But Boyd-Wickizer et al. [11] show
that even for very short mutex-lock based critical sections can
cause dramatic collapse in the performance of real workloads,
when the cores are increasing.

Table 1. Summary of Lock Contention Profiling System

Table 1 illustrates several prevalent lock profiling tools. All
previous tools primarily record profiling data in memory. These
approaches work well for small scale of threads but will cause
unacceptable memory interferences for dozens of threads which
will be common in a many-core system. Our experimental results
show that for a current low-overhead lock profiling approach, the
additional cache misses increase substantially from 8.7% (8
threads) to 25.9% (512 threads) and the extra memory requests
also increase from 15.1% (8 threads) to 73.9% (512 threads).

Since the cache and memory resources per core are
decreasing and becoming critical resources with the core number
increasing, it makes significant sense to provide a lock detection
technique with little memory interference.

In this paper, we propose a hardware assisted lock profiling
mechanism (HaLock) to reduce the memory interference of lock
profiling.

Basic Idea: As illustrated in Table 1, we gather lock
information such as thread id, lock address and lock type via
instrumentation. The distinct advantage of HaLock is that it
leverages a specific hardware called HMTT [2, 9] to record
profiling data. We encode runtime lock information (i.e., thread
id, lock address and lock operation type etc.) into specific
memory addresses which are reserved for HaLock and are

uncacheable to avoid cache pollution. When one lock operation is
captured, instead of storing the profiling data in memory as
previous tools do, HaLock just issues a one-byte memory read
request to an encoded memory address. This specific memory
request is monitored by HMTT which is a hardware-software
hybrid memory trace toolkit for real systems. HMTT packs each
memory address with a timestamp (HMTT’s clock cycles) to form
one lock operation trace, and finally transmits the trace to another
machine via a PCI-e cable.

We implement HaLock in Linux 2.6.32 Kernel and evaluate
HaLock on an 8-core SMP system in comparison to the state of
the art profiling tool LiMiT which temporarily buffers data in
memory and dumps the data into disks afterwards. Experimental
results show that for 8 threads HaLock incurs less than 1.2% extra
memory requests for multithreaded programs while the overhead
of LiMiT is nearly 3.9% on average. Meanwhile, HaLock exhibits
much better scalability than LiMiT, and scales well up to 512
threads. Specifically, HaLock incurs only 4.0% additional L3
cache miss and 3.8% extra memory requests for even an extreme
lock-intensive workload (bodytrack of PARSEC benchmark [10]
exhibiting 4K lock–acquisition operations per second per thread)
with 8 threads (14.8% additional L3 cache miss and 34.3% extra
memory requests for 512 threads). Furthermore, we observe that
the lock behavior collected by HaLock and LiMiT are
substantially different. Since HaLock has much less memory
interference than LiMiT, the large difference means that current
lock profiling tools have non-negligible distortions and
inaccuracy problems. Since performance tuning and debugging
are essential software development steps, it is worthwhile to call
for attention on how to provide efficient and accurate profiling
tools. Thus, we argue that hardware-enabled lock profiling
mechanism is necessary for forthcoming many-core architecture.

In summary, we make the following contributions:

1) The cache and memory interference of recording profiling
data into memory adopted by current lock profiling tools are
quantitatively analyzed. And we demonstrate that recording
data into memory results in serious memory interference.

2) We propose and implement a hardware assisted lock
profiling tool called HaLock which is able to significantly
reduce the memory interference and scales well up to
hundreds of threads.

3) We reveal that the start of the art lock profiling tools have
non-negligible distortions and inaccuracy problems, which
implies the necessity of hardware-enabled lock profiling
mechanisms for many-core architectures. We also argue that
it is worthwhile to pay more attention on how to provide
efficient and accurate profiling tools for many-core
architectures.

The rest of this paper is organized as follows: Section 2
introduces the background of lock contention detection and shows
our motivations for this paper. We describe our mechanism in
Section 3. Experiment environment and evaluation results are

System Info.
Acquisition*

Collection
Method

Data
Record

HPCToolKit [28] P.C. & Inst. Sampling Memory &
Disk

CodeAnalyst[1] P.C. & Inst. Sampling Memory &
Disk

VTune (Thread
Profiler) [3, 4] P.C. & Inst. Sampling Memory &

Disk

Jucprofiler [5] Inst. Continuous Memory &
Disk

Lockmeter [12] Inst. Continuous Memory &
Disk

LockStat [6] Inst. Continuous Memory

LiMiT [16] P.C. & Inst. Continuous Memory &
Disk

HaLock Inst. Continuous HMTT
* P.C is short for Performance Counter, Inst. for Instrumentation

254

`

described and analyzed in Section 4. We summarize the related
work in Section 5, and finally conclude this paper in Section 6.

2. BACKGROUND AND MOTIVATIONS
2.1 Lock Profiling Overhead

As illustrated in Table 1, many efforts have already been
made on improving profiling accuracy and reducing profiling
overhead. Specifically, the overhead of lock profiling depends on
three factors as illustrated in the following formula:

Overheadtotal = Overheadper_lock_trace *
Lock_Trace_Numberper_thread * Thread_Number

For Overheadper_lock_trace, it consists of two phases: 1)
monitoring lock information and 2) recording profiling data.
Previous researches in Table 1 mainly focus on the first phase,
e.g., exploiting performance counter. Nevertheless, for the second
phase, almost all of the current tools adopt a straightforward way
to record profiling data, i.e., writing data directly into local
memory buffers or disks. Sampling techniques is another
optimization direction which tries to reduce
Lock_Trace_Numberper_thread, but it is tricky and probably leads
to the inaccuracy problem.

Most lock profiling tools claim that they have little overhead
(<10%). It is true for small Thread_Number. For example, our
experimental results show that the memory overhead of a
profiling tool similar to LiMiT is only about 3.9% for 8 threads.
But as Thread_Number keeps increasing in this multicore/many-
core era, both Overheadper_lock_trace and
Lock_Trace_Numberper_thread are also influenced, deserving re-
evaluation. Intuitively, the total trace number would sharply
increase, probably resulting in more memory overhead.

2.2 Challenges of Large Scale Threads
To investigate the impact of the increasing Thread_Number

on lock profiling overhead, we measure and analyze the lock
behavior of bodytrack of PARSEC benchmark on an Intel Xeon
8-core machine (details in Section 4). We use an in-house LiMiT-
like tool to collect performance metrics (such as cache miss ratio

and memory requests) via performance counters, and use the
commonly used RDTSC instruction to obtain lock operations’
timestamps. Our lock profiling approach also consists of two
phase. For the monitoring phase, we instrument bodytrack’s
binary codes to collect lock information; for the recording phase,
we first write profiling data into a memory buffer (64MB) and
then dump them into disk when the buffer is full. To facilitate
analyzing, we also divide Overheadtotal into two portions
according to the two phases mentioned in Section 2.1, i.e.,
Overheadmonitoring and Overheadrecording. Thus,

Overheadtotal = Overheadmonitoring + Overheadrecording.

We run the bodytrack benchmark from 8 threads to 512
threads. Figure 1 illustrates the profiling overhead changes in
terms of memory requests (MR_Overhead), L3 cache miss rate
(CM_Overhead) and execution time (Time_Overhead).
According to Figure 1(a), MR_Overheadtotal increases
substantially from 3.3% (8 threads) to 79.2% (512 threads). This
shows that the profiling tools have serious memory interference,
which may potentially alter programs’ execution behaviors and
lead to inaccurate lock behaviors consequently. Figure 1(b)
demonstrates the same phenomenon from the view of L3 cache
miss.

Generally, execution time is the most straightforward metric
of programs’ execution behaviors. If we observe
Time_Overheadtotal shown in Figure 1(c), we can see that the
execution time increases sharply with the thread number, and thus
can roughly conclude that the execution behaviors of the profiled
programs are indeed disturbed. Naturally, the accuracy of current
lock profiling tools is doubtful.

Moreover, compared to MR_Overheadtotal,
MR_Overheadmonitoring increases slowly, just from 0.8% (8
threads) to 25.1% (512 threads), which implies that the recording
phase becomes dominant of memory interferences with
Thread_Number increasing. CM_Overheadrecording and
Time_Overheadrecording also confirm the situation. Thus, we
should put more emphasize on the recording phase.

Figure 1. Profiling overhead of bodytrack program by recording traces through memory.

‐10%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

8 16 32 64 128 256 512

M
R_
O
ve
rh
ea
d

Threads

Overhead_recording

Overhead_monitoring

Overhead_total

(a)

0%

10%

20%

30%

40%

50%

60%

8 16 32 64 128 256 512

Ti
m
e_
O
ve
rh
ea
d

Threads

Overhead_recording
Overhead_monitor ing
Overhead_total

(c)

‐5%

0%

5%

10%

15%

20%

25%

30%

35%

8 16 32 64 128 256 512

CM
_O

ve
rh
ea
d

Threads

Overhead_recording
Overhead_monitoring
Overhead_total

(b)

255

`

Among current recording methods, bypassing cache [26]
seems to be able to eliminate cache pollution but does no help
with memory interference. What’s more, directly dumping traces
into files is too slow that the traces may be dropped when locks
are highly contended. Thus, currently there are no appropriate
solutions to solve the dilemma of the recording phase.

2.3 Our Goal
According to above analysis, current recording mechanisms

suffer from serious cache pollution and memory interferences. In
contemporary multicore systems, L3 cache and memory system
become critical resources, and then memory interference would
result in unpredictable execution behavior variations and
inaccuracy profiling results. There have been numerous studies
focusing on reducing cache interference and memory interference
[17, 18, 25]. It is unacceptable for a profiling tool to cause such
serious interferences to its target programs. Thus, we propose a
hardware assisted lock profiling mechanism (HaLock) which
leverages a specific hardware memory tracing tool (HMTT) to
record large amount of profiling data with negligible overhead.

3. HARDWARE ASSISTED LOCK
PROFILING MECHANISM (HaLock)
3.1 Overview
3.1.1 Introduction of HMTT

HMTT [2, 9] is a platform independent full system memory
trace monitoring system. The system adopts a DIMM-snooping
mechanism which uses hardware boards plugged in DIMM slots
to track virtual memory reference traces of full systems. Thus it is
able to track complete, detail and undistorted traces without
altering original programs’ behavior. In order to dump full mass
memory traces, HMTT utilizes multiple Gigabit Ethernets or PCI-
e cables and RAIDs to send and receive mass memory traces
respectively, which does not perturb host system’s execution at all
even when traces are generated at high speeds. That is why we
choose HMMT to collect lock traces in our lock profiling
approach. Meanwhile, HMTT now supports both DDR2 and
DDR3 UDIMM and RDIMM interfaces, and thus has good
portability.

3.1.2 Principle
The hardware assisted lock profiling mechanism (HaLock)

makes use of HMTT to study lock behaviors of multithreaded
programs. As indicated by Section 2, purely software methods of
lock profiling may lead to heavy memory interferences with
running programs, and consequently derive distorted and
inaccuracy lock behaviors. In order to alleviate memory
interference, HaLock leverages a hybrid mechanism which
combines software-based lock detector and hardware-based trace
collector. Figure 2 depicts the framework of HaLock. There are
five main steps:

1) HaLock detects lock operations and tracks necessary
information such as thread id, lock address, and operation type
(Section 3.2.1) in runtime system. Instrumentation is an efficient

method to achieve this by modifying the source codes of
profiled programs or overlaying dynamic libraries, such as
Pthread library for mutex lock. Though time is indispensable for
analyzing lock behavior, HaLock resorts to HMTT’s hardware
clock time.

2) After gathering the required data for each lock operation,
HaLock encodes them into a specific memory address by memory
address engine (Section 3.2.2). Each part of the memory address
has its specific meaning and we can pick out thread id, lock
address and operation type from it. Then, memory address engine
triggers an access to the memory address by issuing a one-byte
memory read instruction and hopes it to be captured by HMTT
immediately. In order to eliminate negative cache effects and
protect these memory addresses from other processors, a virtual
device owing uncacheable physical memory is registered into
operating system.

3) HMTT is configured to only capture memory address signals
generated by the memory address engine. Once HMTT captures a
signal on memory bus, it filters the address and only records
predefined memory address. Then, a complete trace is constructed
by combining the memory address and HMTT’s global clock time.

4) HaLock leverages HMTT to record above traces by sending
them to another machine via a PCI-e cable or Ethernet. Under this
way, HaLock supports to record even a large amount of traces
without utilizing local CPU and memory resource. Thus, it
achieves provable, strong guarantees, namely, it eliminates the
interference to running programs no matter how large the traces
are.

5) Using off-line analysis, HaLock can display the lock
contention distribution of different locks among all the threads.

Figure 2. Framework of HaLock.

Multithreaded Applications

Lock Operation
Detector

Memory
Address Engine

Char Device with Uncacheable
Memory

Memory
Controller

DRAM

HMTT

Address Filter

Trace
Generator

Bus Snooping

PCI‐e Cable

Memory
Access

Device
Operation

256

`

3.1.3 Advantages
HaLock provides high accuracy and strong scalability (see

Section 4). Firstly, while HaLock stores a large amount of lock
behavior traces through HMTT, it introduces few extra memory
requests unlike previous methods which store traces through
local memory. Therefore, HaLock may degrade little programs’
performance. Secondly, with the help of global hardware clock
provided by HMTT, HaLock does not need to care about clock
variants among different cores. In software based tools, if a
thread is migrated to another processor during lock operations,
the clock difference between two processors may mess up the
lock behavior of this thread, such as negative acquisition time
and impossible huge hold time. HaLock has two advantages:
saving time to read performance counters and eliminating clock
inconsistence among multiple processors.

Finally and the most important one, since HaLock has less
memory interference, the lock behaviors reflected by it are more
convincing and helpful for programs debugging and optimization.

3.2 Runtime System Extensions
3.2.1 Lock Operation Detector

Source and binary instrumentation are both common ways to
obtain runtime contexts such as lock operation behaviors. Since
this paper focuses on mutex lock, we implement lock operation
detector simply by overlaying Pthread library which is transparent
to applications and suitable for those applications without source
codes such as databases.

We instrument routines that could potentially cause lock
contention: pthread_mutex_{lock, trylock, unlock} in the overlaid
Pthread library. To override a routine in a dynamically linked
program, we use library preloading parameter indicated by
LD_PRELOAD environment variable on Linux. When the target
program calls one of the overlaid routines, the instrumented
version of the routine takes over the execution. The overlaid
routine first gathers current thread id and lock address, and then
determines the flag for each kind of lock type.

In order to put emphasis on the effects of recording profiling
data but not obtaining them, the experiments in Section 4 just
obtain basic profiling data by runtime systems. If more profiling
data are collected for each lock operation such as calling stacks,
data recording phase may cause more serious interference by

software based mechanisms and thus HaLock may gain more
benefits.

Though this paper aims at analyzing mutex lock, other locks
such as spinlock contained in Pthread library can also be
monitored by the same technique. As to other lock types beyond
Pthread library such as user defined lock, source code
instrumentation is an alternative and feasible way.

3.2.2 Memory Address Engine
Since there exists a semantic gap between software trace data

and memory bus signals, memory address engine in Figure 2
solves this challenge.

Memory address engine transforms profiling data for a single
lock operation into a specific memory address. This procedure
consists of two parts: (1) how to distinguish these specific
memory addresses from other processes’ memory addresses, and
trigger them to be immediately captured by HMTT; and (2) how
to encode lock addresses, thread identities and lock types in
memory address space.

Device with uncacheable memory: We reserve a small
amount of continuous physical memory for HaLock by setting
“mem” parameter in boot loader. In our experiments, the value of
“mem” is 64MB less than the actual total physical memory size.
Then, the remained 64MB memory cannot be allocated to any
processes by operating system directly, but are accessible by
operating system. We utilize above remained memory as the
HaLock’s specific memory and HMTT can easily distinguish
them from other memory addresses.

However, physical memory addresses cannot be directly
accessed without corresponding linear addresses mapped in
Linux’s page tables. The virtual device shown in Figure 2 fills the
address transformation gap. All the remained memories are
registered into the virtual char device. Insides the char device’s
operations such as mmap and read, we construct the address
mapping from the user’s linear addresses to remained physical
addresses making use of kernel function “remap_pfn_range”. As a
result, the memory address engine achieves to trigger access to
remained physical address by operating the char device.

In general, memory requests are satisfied by caches firstly,
and only memory requests missing caches are sent to memory bus.
In order to get rid of the negative of caches and capture the
requests by HMTT immediately, all the remained memory
addresses are marked as uncacheable in the char device. This
feature also eliminates polluting running programs’ caches and
reduces the memory interference.

Memory address space formats: HaLock’s memory region is
partitioned into three regions which delegate thread id, lock
address and lock type respectively. Obviously, thread id and lock
address, which are 32-bit and 64-bit respectively, cannot encode
into memory address space directly. To address this issue, we
propose a hash table based data transformation approach. In this
approach, HaLock’s runtime system creates two hash tables for

Figure 3. Memory address mapping and its corresponding
address coding format of HaLock.

(a) Memory address mapping for dual channels memory

(b) Address coding format corresponding to (a)

257

`

threads and locks respectively. When new locks or threads are
detected, the runtime system inserts them into their corresponding
hash tables and uses their hash indices to represent them.

Figure 3(b) shows one typical address coding format in our
experiments. If we use a 1024-entry hash table for thread id and
512-entry hash table for lock id, their corresponding hash indices
are 10 bits and 9 bits respectively. The “Flag” attribute delegates
the operation, such as lock, trylock, and unlock. There are three
reserved fields. The length of “Rsvd #1” depends on the size of
HaLock’s region, e.g., 64MB indicating that the high 6 bits are
fixed and the lowest 26 bits are available for HaLock; The “Rsvd
#3” attribute depends on memory bus width and 3 bits means 8-
Byte memory transfer unit. The existence of “Rsvd #2” is
determined by the memory address mapping. In our experiment
platform, the 6th bit of memory address identifies the memory
channel number as illustrated in Figure 3(a). Since one HMTT
card can only monitor one memory channel, the channel bit in the
memory address must be set to the channel that HMTT is plugged
in. The similar reservation fields of “Rsvd #2” are determined by
the memory address mappings which vary largely on different
platforms.

3.3 Limitation
Since HMTT is essentially a memory trace toolkit for

recording profiling data, it is not surprising that there are
limitations affiliated to HaLock.

Delayed timestamp: We propose to exploit global hardware
clock of HMTT as lock operations’ occurrence timestamps. But
this clock has some delays caused by memory controllers which
usually buffer memory requests for scheduling in order to
improve memory efficiency or power [17, 18, 25, 27]. Since the
delays are constrained to at most dozens of cycles by the state-of-
art scheduling algorithms, the timestamp is still trustworthy.

Memory address space formats: In HaLock’s profiling
traces, runtime information are encoded into memory addresses.
However, available bits in memory address are limited to the size
of reserved physical memory and memory address mapping. For
instance, in Figure 3, there are totally 22 bits which can be shared
by threads offset, lock offset and lock types. Generally, these bits
can be enough for most applications. But there might be some
extreme cases that more threads and locks are exploited in a
program. One solution is to reserve more physical memory for
HaLock at the expense of less available memory for targeted
programs.

4. EXPERIMENTS
4.1 Methodology

Platform: Our experiments are conducted on Intel Nehalem
processors. Table 2 summarizes the architectural parameters. As
the bandwidth of PARSEC benchmark is not high, we use only
one DIMM for two sockets. Meanwhile, we reserve 64MB
memory for HaLock which costs only 1.5% of total memory and
does not affect programs execution.

Table 2: Experimental Platform Configuration

Processor
Intel Xeon E5504

(2.0GHz, 32KB L1I and L1D Cache,
256KB L2 Cache, 4MB L3 Cache)

of processors 2
#of cores 8
Channel 2
DIMM 2

Memory Type DDR3-800
Memory Size 4GB (64MB Reserved)

Benchmarks: We use a selection of benchmarks from
PARSEC Benchmarks. In this work, we only focus on mutex lock
of Pthread library. Thus, we choose the programs which on
average have many lock operations from PARSEC benchmark.
Table 3 lists the benchmarks we use in the following experiments.

Table 3: Benchmark summary

Benchmark Parallelization
Model

Lock Operations
per thread per

second
bodytrack data-parallel 4800
facesim data-parallel 670

streamcluster data-parallel 1950
vips data-parallel 55
x264 pipeline 537

Tools: In our experiments, we use hardware performance
counter events [8] to evaluate programs’ behaviors, such as L3
miss ratio and the number of total memory requests. We utilize
TopMC [7] which provides low-overhead access to performance
counters including uncore events (i.e. off-chip events) in Nehalem
architecture.

Comparisons: In order to show that HaLock can reduce
cache misses and memory interferences in recording phase, we
compare HaLock with software based mechanisms storing
profiling data into memory and disk. In the monitoring phase of
all mechanisms, thread id, lock address and lock operation type
are collected for each lock operation. Since HaLock exploits
HMTT’s hardware clock as lock operations’ timestamp, we try to
use low-overhead, and precise time collecting approaches to
ensure fairness in compared mechanisms. Usually, programs use
rdtsc instruction to obtain time information. LiMiT [16] provides
a precise, lightweight mechanism to access on-chip performance
counters including each core’s accurate clock information. Thus,
we compare HaLock with two software based mechanisms which
utilize rdtsc instruction (RDTSC-Lock) and LiMiT (LiMiT-Lock)
to acquire timestamp respectively in our experiments.

4.2 Memory Interferences of Different Lock
Profiling Mechanisms

In this subsection, we will evaluate the memory interferences
of HaLock, RDTSC-Lock and LiMiT-Lock using the
aforementioned programs. For all overhead results in the
experiments, we use original programs without any profiling tools
as the baselines.

258

`

4.2.1 Memory Interferences for Different
Multithreaded Programs

Figure 4 shows the memory interferences and overall
behaviors of the different lock profiling mechanisms for different
multithreaded programs with 8 threads. In general, HaLock incurs
less perturbation than the two other mechanisms for all tested
programs.

As shown in Figure 4, HaLock yields only about 1% extra
memory requests and 1.2% extra cache misses while RDTSC-
Lock results in more than 4.4% extra memory requests and 3.9%
extra cache misses on average. For each program, the increased
memory requests and changed cache miss ratio incurred by
HaLock are less than that incurred by RDTSC-Lock. Since
RDTSC-Lock and LiMiT-Lock both use low-overhead
instructions (rdtsc and rdpmc respectively) to gather timestamps
without incurring memory requests, the monitoring phase of
RDTSC-Lock and LiMiT-Lock are the same as HaLock in terms
of memory requests. Thus, the difference shown in Figure 4
attributes to the recording phase.

In the recording phase of RDTSC-Lock, large amounts of
profiled data are firstly buffered in memory, which would cause

additional cache eviction operations and thus extra memory
requests. When the memory buffer are full, these data are dumped
into disk and this procedure consumers both memory and buffer
cache. However, HaLock only issues a one-byte uncacheable
memory request for each lock operation in the whole recording
phase. Thus, the memory requests and L3 cache miss ratios shown
in Figure 4(a) and 4(b) are lower than RDTSC-Lock.

The memory interference behaviors vary largely for different
programs as shown in Figure 4(a). On one hand, the interferences
are positively correlated to the lock operation frequency. As the
lock operation frequency increases, more memory requests are
issued by each profiling tools. Bodytrack has the highest lock
operation frequency which means that it has the most potential
memory interference. However, the situation seems not suitable
for streamcluster which has 1950 operations per second but only
1.67% extra memory requests even for RDTSC-Lock. Besides
lock operation frequency, the internal behaviors, such as memory
bandwidth and L3 cache miss, of tested programs determine the
overall effects of interferences on the other hand. Figure 5
demonstrates the memory bandwidth and L3 cache miss ratio for
each tested program. The memory bandwidth of streamcluster is
nearly 89% of the total memory bandwidth of our experiment
platform. Compared with streamcluster, the memory requests
issued by RDTSC-Lock are not so obvious. That’s why the
memory requests overhead is low for streamcluster though
RDTSC-Lock incurs lots of extra memory requests.

The above analysis can also illustrate the cache miss ratio
overhead indicated in Figure 4(b). Interestingly, both increased
and decreased cache misses exist. The cache miss of tested
programs are constrained to three factors: originally cache miss,
cache miss of memory requests issued by profiling tools and
cache pollution proportion. Generally, the memory requests
produced by RDTSC-Lock are sequential, and only one request
may be cache miss ideally for each 8 requests. If the tested
programs have poor locality and cache pollution is not serious,
they may suffer from decreased cache misses, such as facesim and
streamcluster, and vice versa.

Figure 5. L3 cache miss and memory bandwidth of
tested benchmarks.

0

1

2

3

4

5

6

0%

20%

40%

60%

80%

100%
M
em

or
y
Ba

nd
w
id
th

L3
 M

is
s
Ra

tio

L3 Miss Ratio Memory Bandwidth

Figure 4. Memory interference comparison for different lock profiling mechanisms when running multiple PARSEC
benchmarks using 8 threads. As LiMiT cannot monitor off-chip events itself, and conflicts with TopMC, the results of

LiMiT-Lock are not shown in (a) and (b).

‐2%

0%

2%

4%

6%

8%

10%

12%

14%

16%
M
em

or
y R

eq
ue

st
s O

ve
rh
ea
d RDTSC‐Lock HaLock

(a) Memory Requests

‐5%

0%

5%

10%

15%

20%

Ru
nt
im

e
Ov

er
he

ad

RDTSC‐Lock LiMiT‐Lock HaLock

(c) Overall Runtime

‐4%

‐2%

0%

2%

4%

6%

8%

10%

L3
 M

iss
 R
at
io
 O
ve
rh
ea
d RDTSC‐Lock HaLock

(b) L3 Miss Ratio

259

`

After studying the memory interference of RDTSC-Lock and
HaLock, we can learn the side effects of these interferences in
terms of runtime in Figure 4(c). On average, the runtime
overheads incurred by RDTSC-Lock and LiMiT-Lock are 8.1%
and 7.8% respectively, but HaLock only incurs 0.1% runtime
overhead. The results demonstrate that RDTSC-Lock and LiMiT-
Lock indeed seriously alter the programs’ execution compared to
HaLock. Especially for memory intensive programs such as
streamcluster, the memory resources become so critical that
additional memory interferences of profiling tools can severely
change programs’ normal execution, increasing up to 17.1%
runtime for streamcluster.

Totally, compared with RDTSC-Lock and LiMiT-Lock,
HaLock is able to reduce memory interference and just slightly
affects programs’ execution.

4.2.2 Scalability for Different Lock profiling
Mechanisms

As the number of cores continually increases, scalability is
significantly important for profiling tools in many-core era.
Obviously, lock contention will be exacerbated when thread
numbers are increasing in multithreaded programs, and memory
interferences would be enlarged for any lock profiling
mechanisms. We measure the scalability of each profiling

mechanisms running bodytrack from 8 threads to 512 threads in
Figure 6.

When bodytrack scales up to 512 threads, HaLock brings
about 34.3% additional memory requests, less than half of
memory overhead brought by RDTSC-Lock shown in Figure 6(a).
The memory interference gap between HaLock and RDTSC-Lock
is enlarged as the number of threads increases. Figure 6(b)
indicates that L3 cache miss has the same tendency as memory
requests. Thus, HaLock has good scalability than other
mechanisms. From Figure 6(c), we can conclude that HaLock can
actually reduce profiling perturbations on programs’ execution
behaviors even if thread number increases.

4.3 Lock Behaviors of Programs
In order to demonstrate the importance of memory

interference on programs’ execution, we use HaLock, RDTSC-
Lock and LiMiT-Lock to collect profiling data and compare their
results in terms of execution time related to lock operations.
Figure 7 illustrates an overview of execution time breakdown by
synchronization region for all tested programs. Free time is the
total cycles when threads are not related to any lock operation;
Lock and Unlock time is the cycles spent in pthread_mutex_lock
and pthread_mutex_unlock for all threads respectively; Lock
Hold time is defined as summation of cycles each thread holds for

Figure 7. Comparison of lock behaviors collected by different mechanisms for PARSEC benchmarks
running with 8 threads.

0%

20%

40%

60%

80%

100%

RDTSC LiMiT HaLock RDTSC LiMiT HaLock RDTSC LiMiT HaLock RDTSC LiMiT HaLock RDTSC LiMiT HaLock

bodytrack facesim streamcluster vips x264

Pe
rc
en

ta
ge

 o
f T

ot
al
 C
yc
le
s Program Execution Time Breakdown by Synchronization Region

Free
Lock
Hold
Unlock
Unknown

Figure 6. Memory interference comparison for different lock profiling mechanisms when the thread number
increases up to 512.

0%

10%

20%

30%

40%

50%

60%

70%

80%

8 16 32 64 128 256 512

M
em

or
y
Re

qu
es
ts
 O
ve
rh
ea
d

Threads

RDTSC‐Lock
HaLock

(a) Memory Requests

0%

5%

10%

15%

20%

25%

30%

8 16 32 64 128 256 512

L3
 M

is
s R

at
io
 O
ve
rh
ea
d

Threads

RDTSC‐Lock

HaLock

(b) L3 Miss Ratio

‐10%

0%

10%

20%

30%

40%

50%

60%

8 16 32 64 128 256 512

Ru
nt
im

e
O
ve
rh
ea
d

Threads

RDTSC‐Lock
LiMiT‐Lock
HaLock

(c) Overall Runtime

260

`

each lock. We consider those error traces having huge or negative
cycles as Unknown region. All the time regions shown in Figure
7 are normalized to the total execution cycle for each thread.

We observe that the lock behaviors collected by HaLock,
RDTSC-Lock and LiMiT-Lock are substantially different. Firstly,
the proportions of profiled region by these mechanisms are varied,
and the memory interferences determine the gap size. As shown
in Figure 4(a), bodytrack and vips suffer from the most serious
memory interferences, and thus their lock behaviors are sharply
differed. Take bodytrack as an example, free time is 58.1% of the
total cycle obtained by RDTSC-Lock, only 24.6% by LiMiT-
Lock, but nearly 81% by HaLock. Secondly, Unlock time of all
programs measured by HaLock are not negligible while the
corresponding time are trivial obtained by LiMiT-Lock and
RDTSC-Lock. Since unlock operation requires invoking system
calls to awake those threads waiting on the lock and hence traps
into interrupt, unlock time should not be as small as shown by
LiMiT-Lock and RDTSC-Lock.

Since all the current profiling tools inevitably bring about
memory interferences to target programs, we have proved that
HaLock has the least memory interferences than current software-
based mechanisms in above subsections. Thus, we can conclude
that current mechanisms have non-negligible distortions and
inaccuracy problems. HaLock can actually provide the most
accurate lock behaviors than other current mechanisms.

5. RELATED WORK
Dedicated hardware for memory trace: Various hardware

monitors are able to monitor memory trace online. Besides
HMTT utilized in this work, other hardware monitors such as
BACH [20], SHRIMP [24], Alliant System [14], can also collect
memory traces online. BACH utilizes a logic analyzer to interface
with host system and buffer the collected traces. When the buffer
is full, the host system is halted by an interrupt and the traces are
moved out. However, this halting mechanism may alter original
behaviors of programs. SHRIMP performance monitor is a
hardware monitor with several novel features including multi-
dimensional histograms, page tags, histogram categories, and a
threshold interrupt mechanism. Torrellas et al. [29] present a
similar hybrid hardware/software approach which could
potentially be used for lock profiling. However their hardware
monitor relied on MIPS buses which were proprietary, and the
software implementations are totally different.

Performance tools: There are numerous studies on
analyzing lock contention. Almost all of them focus on
monitoring phase regardless of how to optimize data recording
phase.

IBM’s jucprofiler [5] analyzes Java’s concurrent locks. It
mainly identifies threads’ contention time and waiting time
caused by contending Java’s concurrent locks. The collected
information by jucprofiler is quite similar with our work.
However, jucprofiler records above information in local memory
and local disk. HPCToolkit [28] uses runtime information

associated with locks to blame lock holders for the idleness of
spinning threads. Thread Profiler [3] measures routines’ effective
parallelism and distinguishes between interaction effects such as
cruise, impact and blocking time of each thread. Lockmeter [12]
and LockStat [6] are tools for analyzing locks in a multiprocessor
Linux kernel.

Others utilize hardware performance events to assist lock
profiling. LiMiT [16] enables precise, lightweight interface to on-
chip performance counter which allows precise reading of
virtualized counters by one or two orders of magnitude faster than
current access techniques. The synchronization characteristics of
PARSEC benchmark detected by LiMiT are different from
characteristics shown by others performance counter tools which
have larger overheads. We compare LiMiT with our approach,
and show that their synchronization characteristics are also varied
a lot because of overheads in data recording phase. Hardware
performance events are also exploited by other tools, such as
Inter’s VTune [4], AMD’s CodeAnalyst [1], ProfileMe [15] and
so on.

6. CONCLUSIONS
In this paper, we have studied the memory interferences

incurred by current lock profiling tools storing profiling data into
memory or disk. Then, we have proposed a hardware assisted lock
profiling tool (HaLock) which is able to significantly reduce the
memory interferences and scales well up to hundreds of threads
by recording all the lock behavior traces through the hardware
HMTT.

Experimental results show that HaLock incurs only 3.8%
extra memory requests and 4% additional cache miss for even a
lock-intensive workload with 8 threads, and has well scalability
up to 512 threads. We also illustrated that the start-of-art lock
profiling tools such as LiMiT have serious memory interferences
and non-negligible inaccuracy problems. Since the
synchronization behaviors obtained by LiMiT have big difference
from those obtained by HaLock, we argue that hardware-enabled
lock profiling mechanism is necessary to analyze lock behaviors.

7. ACKNOWLEDGMENTS
We would like to thank Guangming Tan, Mingyang Chen and

other teammates from ASL, ICT, and the anonymous reviewers
for useful suggestions and insightful feedbacks. This research is
supported by the National Basic Research Program of China (973
Program) under the grant number 2011CB302502 and the
National Natural Science Foundation of China (NSFC) under the
grant number 60925009, 60903046 and 60921002.

8. REFERENCES
[1] AMD CodeAnalyst. http://developer.amd.com/tools/codeanal

yst/pages/default.aspx.
[2] HMTT. http://asg.ict.ac.cn/hmtt/index.html.
[3] Intel Thread Profiler. http://software.intel.com/en-

us/articles/using-intel-thread-profiler-for-win32-threads-
philosophy-and-theory, August 2007.

261

`

[4] Intel VTune Amplifier XE. http://software.intel.com/en-
us/intel-vtune.

[5] Jucprofiler. http://www.infoq.com/articles/jucprofiler.
[6] LockStat. http://hub.opensolaris.org/bin/view/Community+G

roup+dtrace/WebHome.
[7] TopMC. http://asg.ict.ac.cn/projects/topmc/.
[8] Intel 64 and IA-32 Architectures Software Developer’s

Manual, vol. 3A & 3B, 2011.
[9] Yungang Bao, Mingyu Chen, Yuan Ruan, et al. HMTT: a

platform independent full-system memory trace monitoring
system. In ACM SIGMETRICS: International Conference on
Measurement and Modeling of Computer Systems, pages 229-
240, 2008.

[10] Christian Bienia, Sanjeev Kumar, Jaswinder PalSingh, and
Kai Li. The parsec benchmark suite: Characterization and
architectural implications. In Proceedings of the 17th
International Conference on Parallel Architectures and
Compilation Techniques, 2008.

[11] Silas Boyd-Wickizer, M. Frans Kaashoek, Robert Morris,
and Nickolai Zeldovich. Non-scalable locks are dangerous.
In Proceedings of the Linux Symposium, Ottawa,
Canada, July 2012.

[12] R. Bryant and J. Hawkes. Lockmeter: Highly-Informative
Instrumentation for Spin Locks in the Linux Kernel. In
Proceedings of the 4th Annual Linux Showcase and
Conference, pages 271-282, 2000.

[13] D. R. Butenhof. Programming with POSIX threads. Addison-
Wesley Longman Publishing Co., Inc., Boston, MA, USA,
1997.

[14] R. Daigle, C. Xia, and J. Torrellas. Low Perturbation
Address Trace Collection for Operating System,
Multiprogrammed, and Parallel Workloads in
Multiprocessors. Technical report, Center for
Supercomputing Research and Development, Univ. of Illinois
at Urbana-Champaign, Mar. 1996.

[15] Jeffrey Dean, James E. Hicks, Carl A. Waldspurger, William
E. Weihl, and George Chrysos. Profileme: hardware support
for instruction-level profiling on out-of-order processors. In
Proceedings of the 30th annual ACM/IEEE International
Symposium on Microarchitecture, pages 292-302, 1997.

[16] J. Demme and S. Sethumadhavan. Rapid identification of
architectural bottlenecks via precise event counting. In
Proceedings of the 38th International Symposium on
Computer Architecture, pages 353-364, 2011.

[17] Eiman Ebrahimi, Chang Joo Lee, Onur Mutlu, and Yale N.
Patt. Fairness via Source Throttling: A Configurable and
High-Performance Fairness Substrate for Multi-Core Memory
Systems. In Proceedings of the 15th International Conference
on Architectural Support for Programming Languages and
Operating Systems, pages 335-346, 2010.

[18] Eiman Ebrahimi, Rustam Miftakhutdinov, Chris Fallin,
Chang Joo Lee, Onur Mutlu, and Yale N. Patt. Parallel
Application Memory Scheduling. In Proceedings of the 44th
International Symposium on Microarchitecture, pages 2011.

[19] Stijn Eyerman and Lieven Eeckhout. Modeling critical
sections in amdahl's law and its implications for multicore
design. In SIGARCH Comput. Archit. News, pages 38:362-
370, 2010.

[20] J. K. Flanagan, B. E. Nelson, J. K Archibald, K. S. Grimsrud.
BACH: BYU Address Collection Hardware, The Collection
of Complete Traces. In Computer Performance Evaluation
'92: Modeling Techniques and Tools, 1993.

[21] B. Jacob, S. Ng, and D. Wang. Memory systems: Cache,
dram, disk. In Elsevier, 2008.

[22] R. Johnson, I. Pandis, N. Hardavellas, A. Ailamaki, and B.
Falsafi. Shore-MT: A scalable storage manager for the
multicore era. In Proc. 12th International Conference on
Extending Database Technology: Advances in Database
Technology, pages 24–35, New York, NY, USA, 2009.

[23] Milo M. K. Martin, Mark D. Hill, Daniel J. Sorin. Why On-
Chip Cache Coherence is Here to Stay. In communications of
the ACM, vol 55, no 7, July 2012.

[24] M. Martonosi, D. W. Clark, and M. Mesarina. The SHRIMP
Hardware Performance Monitor: Design and Applications. In
Proceedings of SIGMETRICS Symposium on Parallel and
Distributed Tools, pages 61-69, February 1996.

[25] Onur Mutlu and Thomas Moscibroda. Parallelism-Aware
Batch Scheduling: Enhancing both Performance and Fairness
of Shared DRAM Systems. In Proceedings of the 35th
International Symposium on Computer Architecture, pages
63-74, 2008.

[26] N. Qu, X. G. Gou, and X. Cheng. Using Uncacheable
Memory to Improve Unity Linux Performance. In
Proceedings of the 6th Annual Workshop on the Interaction
between Operating Systems and Computer Architecture,
pages 27-32, 2005.

[27] S. Rixner. Memory Controller Optimizations for Web
Servers. In Proceedings of the 37th International Symposium
on Microarchitecture, pages 355-366, 2004.

[28] N. R. Tallent, J. M. Mellor-Crummey, and A. Porterfield.
Analyzing Lock Contention in Multithreaded Applications.
In Proceedings of the ACM SIGPLAN Symposium on
Principles and Practice of Parallel Programming, pages
269–279, 2010.

[29] Josep Torrellas , Anoop Gupta , John Hennessy.
Characterizing the caching and synchronization performance
of a multiprocessor operating system, In Proceedings of the
fifth international conference on Architectural support for
programming languages and operating systems, p.162-174,
1992.

.

262

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Tags
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJDFFile false
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments true
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Academy
 /AgencyFB-Bold
 /AgencyFB-Reg
 /Alba
 /AlbaMatter
 /AlbaSuper
 /Algerian
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialRoundedMTBold
 /ArialUnicodeMS
 /BabyKruffy
 /BaskOldFace
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BlackadderITC-Regular
 /BodoniMT
 /BodoniMTBlack
 /BodoniMTBlack-Italic
 /BodoniMT-Bold
 /BodoniMT-BoldItalic
 /BodoniMTCondensed
 /BodoniMTCondensed-Bold
 /BodoniMTCondensed-BoldItalic
 /BodoniMTCondensed-Italic
 /BodoniMT-Italic
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BradleyHandITC
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /CalisMTBol
 /CalistoMT
 /CalistoMT-BoldItalic
 /CalistoMT-Italic
 /Cambria
 /Cambria-Bold
 /Cambria-BoldItalic
 /Cambria-Italic
 /CambriaMath
 /Castellar
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chick
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CopperplateGothic-Bold
 /CopperplateGothic-Light
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /Croobie
 /CurlzMT
 /EdwardianScriptITC
 /Elephant-Italic
 /Elephant-Regular
 /EngraversMT
 /ErasITC-Bold
 /ErasITC-Demi
 /ErasITC-Light
 /ErasITC-Medium
 /EstrangeloEdessa
 /Fat
 /FelixTitlingMT
 /FootlightMTLight
 /ForteMT
 /FranklinGothic-Book
 /FranklinGothic-BookItalic
 /FranklinGothic-Demi
 /FranklinGothic-DemiCond
 /FranklinGothic-DemiItalic
 /FranklinGothic-Heavy
 /FranklinGothic-HeavyItalic
 /FranklinGothic-Medium
 /FranklinGothic-MediumCond
 /FranklinGothic-MediumItalic
 /FreestyleScript-Regular
 /FrenchScriptMT
 /Freshbot
 /Frosty
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Gigi-Regular
 /GillSansMT
 /GillSansMT-Bold
 /GillSansMT-BoldItalic
 /GillSansMT-Condensed
 /GillSansMT-ExtraCondensedBold
 /GillSansMT-Italic
 /GillSans-UltraBold
 /GillSans-UltraBoldCondensed
 /GlooGun
 /GloucesterMT-ExtraCondensed
 /GoudyOldStyleT-Bold
 /GoudyOldStyleT-Italic
 /GoudyOldStyleT-Regular
 /GoudyStout
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /ImprintMT-Shadow
 /InformalRoman-Regular
 /Jenkinsv20
 /Jenkinsv20Thik
 /Jokerman-Regular
 /Jokewood
 /JuiceITC-Regular
 /Karat
 /Kartika
 /KristenITC-Regular
 /KunstlerScript
 /Latha
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSans-Typewriter
 /LucidaSans-TypewriterBold
 /LucidaSans-TypewriterBoldOblique
 /LucidaSans-TypewriterOblique
 /LucidaSansUnicode
 /Magneto-Bold
 /MaiandraGD-Regular
 /Mangal-Regular
 /MaturaMTScriptCapitals
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MSOutlook
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /OCRAExtended
 /OldEnglishTextMT
 /Onyx
 /PalaceScriptMT
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Papyrus-Regular
 /Parchment-Regular
 /Perpetua
 /Perpetua-Bold
 /Perpetua-BoldItalic
 /Perpetua-Italic
 /PerpetuaTitlingMT-Bold
 /PerpetuaTitlingMT-Light
 /Playbill
 /Poornut
 /PoorRichard-Regular
 /Porkys
 /PorkysHeavy
 /Pristina-Regular
 /PussycatSassy
 /PussycatSnickers
 /Raavi
 /RageItalic
 /Ravie
 /Rockwell
 /Rockwell-Bold
 /Rockwell-BoldItalic
 /Rockwell-Condensed
 /Rockwell-CondensedBold
 /Rockwell-ExtraBold
 /Rockwell-Italic
 /ScriptMTBold
 /ShowcardGothic-Reg
 /Shruti
 /SnapITC-Regular
 /Square721BT-Roman
 /Stencil
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /TwCenMT-Bold
 /TwCenMT-BoldItalic
 /TwCenMT-Condensed
 /TwCenMT-CondensedBold
 /TwCenMT-CondensedExtraBold
 /TwCenMT-Italic
 /TwCenMT-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Vrinda
 /Webdings
 /WeltronUrban
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages true
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages true
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /PDFX1a:2003
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e9ad88d2891cf76845370524d53705237300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc9ad854c18cea76845370524d5370523786557406300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000620065006400730074002000650067006e006500720020007300690067002000740069006c002000700072006500700072006500730073002d007500640073006b007200690076006e0069006e00670020006100660020006800f8006a0020006b00760061006c0069007400650074002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f006300680077006500720074006900670065002000500072006500700072006500730073002d0044007200750063006b0065002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f00730020005000440046002000640065002000410064006f0062006500200061006400650063007500610064006f00730020007000610072006100200069006d0070007200650073006900f3006e0020007000720065002d0065006400690074006f007200690061006c00200064006500200061006c00740061002000630061006c0069006400610064002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f0075007200200075006e00650020007100750061006c0069007400e90020006400270069006d007000720065007300730069006f006e00200070007200e9007000720065007300730065002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f00620065002000500044004600200070006900f900200061006400610074007400690020006100200075006e00610020007000720065007300740061006d0070006100200064006900200061006c007400610020007100750061006c0069007400e0002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea306a30d730ea30d730ec30b951fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a306b306f30d530a930f330c8306e57cb30818fbc307f304c5fc59808306730593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020ace0d488c9c80020c2dcd5d80020c778c1c4c5d00020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken die zijn geoptimaliseerd voor prepress-afdrukken van hoge kwaliteit. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d00200065007200200062006500730074002000650067006e0065007400200066006f00720020006600f80072007400720079006b006b0073007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c0069007400650074002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020006d00610069007300200061006400650071007500610064006f00730020007000610072006100200070007200e9002d0069006d0070007200650073007300f50065007300200064006500200061006c007400610020007100750061006c00690064006100640065002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f00740020006c00e400680069006e006e00e4002000760061006100740069007600610061006e0020007000610069006e006100740075006b00730065006e002000760061006c006d0069007300740065006c00750074007900f6006800f6006e00200073006f00700069007600690061002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d002000e400720020006c00e4006d0070006c0069006700610020006600f60072002000700072006500700072006500730073002d007500740073006b00720069006600740020006d006500640020006800f600670020006b00760061006c0069007400650074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents best suited for high-quality prepress printing. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /ConvertToCMYK
 /DestinationProfileName ()
 /DestinationProfileSelector /DocumentCMYK
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure false
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles false
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /DocumentCMYK
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /UseDocumentProfile
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

