
` 

HaLock: Hardware-Assisted Lock Contention Detection  
in Multithreaded Applications

Yongbing Huang†‡, Zehan Cui†‡, Licheng Chen†‡, Wenli Zhang†, Yungang Bao†, Mingyu Chen† 
†State Key Laboratory of Computer Architecture, Institute of Computing Technology,  

Chinese Academy of Sciences, Beijing, China 
‡Graduate University of Chinese Academy of Sciences, Beijing, China 

{huangyongbing, cuizehan, chenlicheng, zhangwl, baoyg, cmy}@ict.ac.cn
 

 

ABSTRACT 
Multithreaded programming relies on locks to ensure the 
consistency of shared data. Lock contention is the main reason of 
low parallel efficiency and poor scalability of multithreaded 
programs. Lock profiling is the primary approach to detect lock 
contention. Prior lock profiling tools are able to track lock 
behaviors but directly store profiling data into local memory 
regardless of the memory interference on targeted programs.  

In this paper, we find that the memory interference is non-
trivial and can significantly affect programs’ execution as thread 
number increases. To address this problem, we propose a 
hardware assisted lock profiling mechanism (HaLock) which 
leverages a specific hardware memory tracing tool (HMTT) to 
record large amount of profiling data with negligible overhead 
and impact on even large scale multithreaded programs.  

Experimental results show that HaLock incurs only about 
14.8% additional L3 cache misses and 34.3% extra memory 
requests for a lock-intensive workload (bodytrack of PARSEC 
benchmark) with 512 threads, while the previous state of the art 
low-overhead approach causes 25.9% additional L3 cache misses 
and 73.8% additional memory requests. Compared with HaLock’s 
profiling data, we find that the lock behaviors obtained by the 
state of art lock profiling tools have substantial distortions, 
resulting in non-negligible inaccuracy problems.  

Categories and Subject Descriptors 
C.4 [Performance of systems]: Measurement techniques, 
performance attributes; D.1.3 [Programming techniques]: 
Concurrent Programming--Parallel programming 

General Terms 
Design, Measurement, Performance 

Keywords 
Multithreading, Lock Contention, Memory Interference, 
Performance Analysis, HMTT 

1. INTRODUCTION 
Multithreaded programming is the dominated programming 

model on shared memory multicores platform. Recent research 
[23] argues that coherence protocol which is regarded as the 
primary reason of poor scalability of shared memory architecture, 
is able to scale well up to even 512-core. Therefore, multithreaded 
programming will probably still be the most popular 
programming model for forthcoming many-core machines. 

Since multithreaded applications use locks, such as mutex 
locks of POSIX thread [13] library, to guard the consistency of 
shared data, lock contention has long been considered as a key 
impediment to applications’ scalability. For instance, Johnson et 
al. [22] investigate four popular open source databases (Shore, 
BerkeleyDB, MySQL, and PostgreSQL) on a multicore system, 
and identify lock contention as the major bottleneck for scaling up 
to 32 threads. Multithreaded programming relying on locks puts 
programmers in a dilemma that coarse-grain locks significantly 
degrade program’s performance and scalability due to lock 
contention but fine-grain locks are error-prone, thus requiring 
substantial development efforts. Therefore, profiling lock 
information and diagnosing lock contention are still of great 
interest. By identifying lock contention hotspots and shortening or 
removing them, Johnson et al. [22] achieved 2-4 times 
performance improvement. 

Generally, a typical look profiling tool consists of two steps: 
Firstly, it adopts either instrumentation or performance counter to 
capture runtime lock information such as thread id, operation 
types and time information [5, 12, 16]. Some tools may further 
support advanced functionalities, such as thread filters or source 
file filters [28]. Obliviously, collecting more information means 
paying higher cost. Generally, instrumentation has higher cost but 
is more flexible, while performance counter costs less but collects 
less information. Secondly, it needs to record the profiling data 
for offline analysis. To our best knowledge, almost all of the 
current tools preserve profiling data in local memory buffers or 
disks [2, 4, 5, 12, 15, 16, 28]. Basically, a profiling tool itself 
should not significantly affect its target program’s execution. 
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However, writing large amount of data into memory will cause 
additional cache pollution and extra memory pressures which may 
significantly perturb the targeted program’s runtime behaviors 
thereby resulting in distorted profiling, especially for memory 
sensitive applications.  

Sampling is an alternative method to reduce the profiling 
overhead and the runtime interference. However, it is likely to 
miss small critical sections [11, 16] which are also necessary to be 
optimized for scalability [19]. But Boyd-Wickizer et al. [11] show 
that even for very short mutex-lock based critical sections can 
cause dramatic collapse in the performance of real workloads, 
when the cores are increasing. 

Table 1. Summary of Lock Contention Profiling System 

Table 1 illustrates several prevalent lock profiling tools. All 
previous tools primarily record profiling data in memory. These 
approaches work well for small scale of threads but will cause 
unacceptable memory interferences for dozens of threads which 
will be common in a many-core system. Our experimental results 
show that for a current low-overhead lock profiling approach, the 
additional cache misses increase substantially from 8.7% (8 
threads) to 25.9% (512 threads) and the extra memory requests 
also increase from 15.1% (8 threads) to 73.9% (512 threads). 

Since the cache and memory resources per core are 
decreasing and becoming critical resources with the core number 
increasing, it makes significant sense to provide a lock detection 
technique with little memory interference. 

In this paper, we propose a hardware assisted lock profiling 
mechanism (HaLock) to reduce the memory interference of lock 
profiling.  

Basic Idea: As illustrated in Table 1, we gather lock 
information such as thread id, lock address and lock type via 
instrumentation. The distinct advantage of HaLock is that it 
leverages a specific hardware called HMTT [2, 9] to record 
profiling data. We encode runtime lock information (i.e., thread 
id, lock address and lock operation type etc.) into specific 
memory addresses which are reserved for HaLock and are 

uncacheable to avoid cache pollution. When one lock operation is 
captured, instead of storing the profiling data in memory as 
previous tools do, HaLock just issues a one-byte memory read 
request to an encoded memory address. This specific memory 
request is monitored by HMTT which is a hardware-software 
hybrid memory trace toolkit for real systems. HMTT packs each 
memory address with a timestamp (HMTT’s clock cycles) to form 
one lock operation trace, and finally transmits the trace to another 
machine via a PCI-e cable. 

We implement HaLock in Linux 2.6.32 Kernel and evaluate 
HaLock on an 8-core SMP system in comparison to the state of 
the art profiling tool LiMiT which temporarily buffers data in 
memory and dumps the data into disks afterwards. Experimental 
results show that for 8 threads HaLock incurs less than 1.2% extra 
memory requests for multithreaded programs while the overhead 
of LiMiT is nearly 3.9% on average. Meanwhile, HaLock exhibits 
much better scalability than LiMiT, and scales well up to 512 
threads. Specifically, HaLock incurs only 4.0% additional L3 
cache miss and 3.8% extra memory requests for even an extreme 
lock-intensive workload (bodytrack of PARSEC benchmark [10] 
exhibiting 4K lock–acquisition operations per second per thread) 
with 8 threads (14.8% additional L3 cache miss and 34.3% extra 
memory requests for 512 threads). Furthermore, we observe that 
the lock behavior collected by HaLock and LiMiT are 
substantially different. Since HaLock has much less memory 
interference than LiMiT, the large difference means that current 
lock profiling tools have non-negligible distortions and 
inaccuracy problems. Since performance tuning and debugging 
are essential software development steps, it is worthwhile to call 
for attention on how to provide efficient and accurate profiling 
tools. Thus, we argue that hardware-enabled lock profiling 
mechanism is necessary for forthcoming many-core architecture. 

In summary, we make the following contributions: 

1) The cache and memory interference of recording profiling 
data into memory adopted by current lock profiling tools are 
quantitatively analyzed. And we demonstrate that recording 
data into memory results in serious memory interference. 

2) We propose and implement a hardware assisted lock 
profiling tool called HaLock which is able to significantly 
reduce the memory interference and scales well up to 
hundreds of threads.  

3) We reveal that the start of the art lock profiling tools have 
non-negligible distortions and inaccuracy problems, which 
implies the necessity of hardware-enabled lock profiling 
mechanisms for many-core architectures. We also argue that 
it is worthwhile to pay more attention on how to provide 
efficient and accurate profiling tools for many-core 
architectures. 

The rest of this paper is organized as follows: Section 2 
introduces the background of lock contention detection and shows 
our motivations for this paper. We describe our mechanism in 
Section 3. Experiment environment and evaluation results are 

System Info. 
Acquisition* 

Collection  
Method 

Data 
Record 

HPCToolKit [28] P.C. & Inst. Sampling Memory & 
Disk 

CodeAnalyst[1] P.C. & Inst. Sampling Memory & 
Disk 

VTune (Thread 
Profiler) [3, 4] P.C. & Inst. Sampling Memory & 

Disk 

Jucprofiler [5] Inst. Continuous Memory & 
Disk 

Lockmeter [12] Inst. Continuous Memory & 
Disk 

LockStat [6] Inst. Continuous Memory  

LiMiT [16] P.C. & Inst. Continuous Memory & 
Disk 

HaLock Inst. Continuous HMTT 
* P.C is short for Performance Counter, Inst. for Instrumentation 
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described and analyzed in Section 4. We summarize the related 
work in Section 5, and finally conclude this paper in Section 6. 

2. BACKGROUND AND MOTIVATIONS 
2.1 Lock Profiling Overhead 

As illustrated in Table 1, many efforts have already been 
made on improving profiling accuracy and reducing profiling 
overhead. Specifically, the overhead of lock profiling depends on 
three factors as illustrated in the following formula:  

Overheadtotal = Overheadper_lock_trace * 
Lock_Trace_Numberper_thread * Thread_Number 

For Overheadper_lock_trace, it consists of two phases: 1) 
monitoring lock information and 2) recording profiling data. 
Previous researches in Table 1 mainly focus on the first phase, 
e.g., exploiting performance counter. Nevertheless, for the second 
phase, almost all of the current tools adopt a straightforward way 
to record profiling data, i.e., writing data directly into local 
memory buffers or disks. Sampling techniques is another 
optimization direction which tries to reduce 
Lock_Trace_Numberper_thread, but it is tricky and probably leads 
to the inaccuracy problem.  

Most lock profiling tools claim that they have little overhead 
(<10%). It is true for small Thread_Number. For example, our 
experimental results show that the memory overhead of a 
profiling tool similar to LiMiT is only about 3.9% for 8 threads. 
But as Thread_Number keeps increasing in this multicore/many-
core era, both Overheadper_lock_trace and 
Lock_Trace_Numberper_thread are also influenced, deserving re-
evaluation. Intuitively, the total trace number would sharply 
increase, probably resulting in more memory overhead. 

2.2 Challenges of Large Scale Threads 
To investigate the impact of the increasing Thread_Number 

on lock profiling overhead, we measure and analyze the lock 
behavior of bodytrack of PARSEC benchmark on an Intel Xeon 
8-core machine (details in Section 4). We use an in-house LiMiT-
like tool to collect performance metrics (such as cache miss ratio 

and memory requests) via performance counters, and use the 
commonly used RDTSC instruction to obtain lock operations’ 
timestamps. Our lock profiling approach also consists of two 
phase. For the monitoring phase, we instrument bodytrack’s 
binary codes to collect lock information; for the recording phase, 
we first write profiling data into a memory buffer (64MB) and 
then dump them into disk when the buffer is full. To facilitate 
analyzing, we also divide Overheadtotal into two portions 
according to the two phases mentioned in Section 2.1, i.e., 
Overheadmonitoring and Overheadrecording. Thus, 

Overheadtotal = Overheadmonitoring + Overheadrecording. 

We run the bodytrack benchmark from 8 threads to 512 
threads. Figure 1 illustrates the profiling overhead changes in 
terms of memory requests (MR_Overhead), L3 cache miss rate 
(CM_Overhead) and execution time (Time_Overhead).  
According to Figure 1(a), MR_Overheadtotal increases 
substantially from 3.3% (8 threads) to 79.2% (512 threads). This 
shows that the profiling tools have serious memory interference, 
which may potentially alter programs’ execution behaviors and 
lead to inaccurate lock behaviors consequently. Figure 1(b) 
demonstrates the same phenomenon from the view of L3 cache 
miss.  

Generally, execution time is the most straightforward metric 
of programs’ execution behaviors. If we observe 
Time_Overheadtotal shown in Figure 1(c), we can see that the 
execution time increases sharply with the thread number, and thus 
can roughly conclude that the execution behaviors of the profiled 
programs are indeed disturbed. Naturally, the accuracy of current 
lock profiling tools is doubtful. 

Moreover, compared to MR_Overheadtotal, 
MR_Overheadmonitoring increases slowly, just from 0.8% (8 
threads) to 25.1% (512 threads), which implies that the recording 
phase becomes dominant of memory interferences with 
Thread_Number increasing. CM_Overheadrecording and 
Time_Overheadrecording also confirm the situation. Thus, we 
should put more emphasize on the recording phase. 

Figure 1. Profiling overhead of bodytrack program by recording traces through memory. 
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Among current recording methods, bypassing cache [26] 
seems to be able to eliminate cache pollution but does no help 
with memory interference. What’s more, directly dumping traces 
into files is too slow that the traces may be dropped when locks 
are highly contended. Thus, currently there are no appropriate 
solutions to solve the dilemma of the recording phase. 

2.3 Our Goal 
According to above analysis, current recording mechanisms 

suffer from serious cache pollution and memory interferences. In 
contemporary multicore systems, L3 cache and memory system 
become critical resources, and then memory interference would 
result in unpredictable execution behavior variations and 
inaccuracy profiling results. There have been numerous studies 
focusing on reducing cache interference and memory interference 
[17, 18, 25]. It is unacceptable for a profiling tool to cause such 
serious interferences to its target programs. Thus, we propose a 
hardware assisted lock profiling mechanism (HaLock) which 
leverages a specific hardware memory tracing tool (HMTT) to 
record large amount of profiling data with negligible overhead.  

3. HARDWARE ASSISTED LOCK 
PROFILING MECHANISM (HaLock) 
3.1 Overview 
3.1.1 Introduction of HMTT 

HMTT [2, 9] is a platform independent full system memory 
trace monitoring system. The system adopts a DIMM-snooping 
mechanism which uses hardware boards plugged in DIMM slots 
to track virtual memory reference traces of full systems. Thus it is 
able to track complete, detail and undistorted traces without 
altering original programs’ behavior. In order to dump full mass 
memory traces, HMTT utilizes multiple Gigabit Ethernets or PCI-
e cables and RAIDs to send and receive mass memory traces 
respectively, which does not perturb host system’s execution at all 
even when traces are generated at high speeds. That is why we 
choose HMMT to collect lock traces in our lock profiling 
approach. Meanwhile, HMTT now supports both DDR2 and 
DDR3 UDIMM and RDIMM interfaces, and thus has good 
portability. 

3.1.2 Principle 
The hardware assisted lock profiling mechanism (HaLock) 

makes use of HMTT to study lock behaviors of multithreaded 
programs. As indicated by Section 2, purely software methods of 
lock profiling may lead to heavy memory interferences with 
running programs, and consequently derive distorted and 
inaccuracy lock behaviors. In order to alleviate memory 
interference, HaLock leverages a hybrid mechanism which 
combines software-based lock detector and hardware-based trace 
collector. Figure 2 depicts the framework of HaLock. There are 
five main steps: 

1) HaLock detects lock operations and tracks necessary 
information such as thread id, lock address, and operation type 
(Section 3.2.1) in runtime system. Instrumentation is an efficient  

method to achieve this by modifying the source codes of 
profiled programs or overlaying dynamic libraries, such as 
Pthread library for mutex lock. Though time is indispensable for 
analyzing lock behavior, HaLock resorts to HMTT’s hardware 
clock time. 

2) After gathering the required data for each lock operation, 
HaLock encodes them into a specific memory address by memory 
address engine (Section 3.2.2). Each part of the memory address 
has its specific meaning and we can pick out thread id, lock 
address and operation type from it. Then, memory address engine 
triggers an access to the memory address by issuing a one-byte 
memory read instruction and hopes it to be captured by HMTT 
immediately. In order to eliminate negative cache effects and 
protect these memory addresses from other processors, a virtual 
device owing uncacheable physical memory is registered into 
operating system. 

3) HMTT is configured to only capture memory address signals 
generated by the memory address engine. Once HMTT captures a 
signal on memory bus, it filters the address and only records 
predefined memory address. Then, a complete trace is constructed 
by combining the memory address and HMTT’s global clock time. 

4) HaLock leverages HMTT to record above traces by sending 
them to another machine via a PCI-e cable or Ethernet. Under this 
way, HaLock supports to record even a large amount of traces 
without utilizing local CPU and memory resource. Thus, it 
achieves provable, strong guarantees, namely, it eliminates the 
interference to running programs no matter how large the traces 
are.  

5) Using off-line analysis, HaLock can display the lock 
contention distribution of different locks among all the threads. 

Figure 2. Framework of HaLock. 
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3.1.3 Advantages 
HaLock provides high accuracy and strong scalability (see 

Section 4). Firstly, while HaLock stores a large amount of lock 
behavior traces through HMTT, it introduces few extra memory 
requests unlike previous methods which store traces through 
local memory. Therefore, HaLock may degrade little programs’ 
performance. Secondly, with the help of global hardware clock 
provided by HMTT, HaLock does not need to care about clock 
variants among different cores. In software based tools, if a 
thread is migrated to another processor during lock operations, 
the clock difference between two processors may mess up the 
lock behavior of this thread, such as negative acquisition time 
and impossible huge hold time. HaLock has two advantages: 
saving time to read performance counters and eliminating clock 
inconsistence among multiple processors.  

Finally and the most important one, since HaLock has less 
memory interference, the lock behaviors reflected by it are more 
convincing and helpful for programs debugging and optimization. 

3.2 Runtime System Extensions 
3.2.1 Lock Operation Detector  

Source and binary instrumentation are both common ways to 
obtain runtime contexts such as lock operation behaviors. Since 
this paper focuses on mutex lock, we implement lock operation 
detector simply by overlaying Pthread library which is transparent 
to applications and suitable for those applications without source 
codes such as databases.  

We instrument routines that could potentially cause lock 
contention: pthread_mutex_{lock, trylock, unlock} in the overlaid 
Pthread library. To override a routine in a dynamically linked 
program, we use library preloading parameter indicated by 
LD_PRELOAD environment variable on Linux. When the target 
program calls one of the overlaid routines, the instrumented 
version of the routine takes over the execution. The overlaid 
routine first gathers current thread id and lock address, and then 
determines the flag for each kind of lock type.  

In order to put emphasis on the effects of recording profiling 
data but not obtaining them, the experiments in Section 4 just 
obtain basic profiling data by runtime systems. If more profiling 
data are collected for each lock operation such as calling stacks, 
data recording phase may cause more serious interference by 

software based mechanisms and thus HaLock may gain more 
benefits. 

Though this paper aims at analyzing mutex lock, other locks 
such as spinlock contained in Pthread library can also be 
monitored by the same technique. As to other lock types beyond 
Pthread library such as user defined lock, source code 
instrumentation is an alternative and feasible way. 

3.2.2 Memory Address Engine 
Since there exists a semantic gap between software trace data 

and memory bus signals, memory address engine in Figure 2 
solves this challenge. 

Memory address engine transforms profiling data for a single 
lock operation into a specific memory address. This procedure 
consists of two parts: (1) how to distinguish these specific 
memory addresses from other processes’ memory addresses, and 
trigger them to be immediately captured by HMTT; and (2) how 
to encode lock addresses, thread identities and lock types in 
memory address space. 

Device with uncacheable memory: We reserve a small 
amount of continuous physical memory for HaLock by setting 
“mem” parameter in boot loader. In our experiments, the value of 
“mem” is 64MB less than the actual total physical memory size. 
Then, the remained 64MB memory cannot be allocated to any 
processes by operating system directly, but are accessible by 
operating system. We utilize above remained memory as the 
HaLock’s specific memory and HMTT can easily distinguish 
them from other memory addresses. 

However, physical memory addresses cannot be directly 
accessed without corresponding linear addresses mapped in 
Linux’s page tables. The virtual device shown in Figure 2 fills the 
address transformation gap. All the remained memories are 
registered into the virtual char device. Insides the char device’s 
operations such as mmap and read, we construct the address 
mapping from the user’s linear addresses to remained physical 
addresses making use of kernel function “remap_pfn_range”. As a 
result, the memory address engine achieves to trigger access to 
remained physical address by operating the char device. 

In general, memory requests are satisfied by caches firstly, 
and only memory requests missing caches are sent to memory bus. 
In order to get rid of the negative of caches and capture the 
requests by HMTT immediately, all the remained memory 
addresses are marked as uncacheable in the char device. This 
feature also eliminates polluting running programs’ caches and 
reduces the memory interference.  

Memory address space formats: HaLock’s memory region is 
partitioned into three regions which delegate thread id, lock 
address and lock type respectively. Obviously, thread id and lock 
address, which are 32-bit and 64-bit respectively, cannot encode 
into memory address space directly. To address this issue, we 
propose a hash table based data transformation approach. In this 
approach, HaLock’s runtime system creates two hash tables for 

Figure 3. Memory address mapping and its corresponding 
address coding format of HaLock.

(a) Memory address mapping for dual channels memory 

(b) Address coding format corresponding to (a) 
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threads and locks respectively. When new locks or threads are 
detected, the runtime system inserts them into their corresponding 
hash tables and uses their hash indices to represent them. 

Figure 3(b) shows one typical address coding format in our 
experiments. If we use a 1024-entry hash table for thread id and 
512-entry hash table for lock id, their corresponding hash indices 
are 10 bits and 9 bits respectively. The “Flag” attribute delegates 
the operation, such as lock, trylock, and unlock. There are three 
reserved fields. The length of “Rsvd #1” depends on the size of 
HaLock’s region, e.g., 64MB indicating that the high 6 bits are 
fixed and the lowest 26 bits are available for HaLock;  The “Rsvd 
#3” attribute depends on memory bus width and 3 bits means 8-
Byte memory transfer unit. The existence of “Rsvd #2” is 
determined by the memory address mapping. In our experiment 
platform, the 6th bit of memory address identifies the memory 
channel number as illustrated in Figure 3(a). Since one HMTT 
card can only monitor one memory channel, the channel bit in the 
memory address must be set to the channel that HMTT is plugged 
in. The similar reservation fields of “Rsvd #2” are determined by 
the memory address mappings which vary largely on different 
platforms. 

3.3 Limitation 
Since HMTT is essentially a memory trace toolkit for 

recording profiling data, it is not surprising that there are 
limitations affiliated to HaLock.  

Delayed timestamp: We propose to exploit global hardware 
clock of HMTT as lock operations’ occurrence timestamps. But 
this clock has some delays caused by memory controllers which 
usually buffer memory requests for scheduling in order to 
improve memory efficiency or power [17, 18, 25, 27]. Since the 
delays are constrained to at most dozens of cycles by the state-of-
art scheduling algorithms, the timestamp is still trustworthy. 

Memory address space formats: In HaLock’s profiling 
traces, runtime information are encoded into memory addresses. 
However, available bits in memory address are limited to the size 
of reserved physical memory and memory address mapping. For 
instance, in Figure 3, there are totally 22 bits which can be shared 
by threads offset, lock offset and lock types. Generally, these bits 
can be enough for most applications. But there might be some 
extreme cases that more threads and locks are exploited in a 
program. One solution is to reserve more physical memory for 
HaLock at the expense of less available memory for targeted 
programs. 

4. EXPERIMENTS 
4.1 Methodology 

Platform: Our experiments are conducted on Intel Nehalem 
processors. Table 2 summarizes the architectural parameters. As 
the bandwidth of PARSEC benchmark is not high, we use only 
one DIMM for two sockets. Meanwhile, we reserve 64MB 
memory for HaLock which costs only 1.5% of total memory and 
does not affect programs execution. 

Table 2: Experimental Platform Configuration 

Processor 
Intel Xeon E5504 

(2.0GHz, 32KB L1I and L1D Cache, 
256KB L2 Cache, 4MB L3 Cache)

# of processors 2 
#of cores 8 
Channel 2 
DIMM 2 

Memory Type DDR3-800
Memory Size 4GB (64MB Reserved)

Benchmarks: We use a selection of benchmarks from 
PARSEC Benchmarks. In this work, we only focus on mutex lock 
of Pthread library. Thus, we choose the programs which on 
average have many lock operations from PARSEC benchmark. 
Table 3 lists the benchmarks we use in the following experiments. 

Table 3: Benchmark summary 

Benchmark Parallelization 
Model 

Lock Operations 
per thread per 

second 
bodytrack data-parallel 4800
facesim data-parallel 670

streamcluster data-parallel 1950
vips data-parallel 55
x264 pipeline 537

Tools: In our experiments, we use hardware performance 
counter events [8] to evaluate programs’ behaviors, such as L3 
miss ratio and the number of total memory requests. We utilize 
TopMC [7] which provides low-overhead access to performance 
counters including uncore events (i.e. off-chip events) in Nehalem 
architecture. 

Comparisons: In order to show that HaLock can reduce 
cache misses and memory interferences in recording phase, we 
compare HaLock with software based mechanisms storing 
profiling data into memory and disk. In the monitoring phase of 
all mechanisms, thread id, lock address and lock operation type 
are collected for each lock operation. Since HaLock exploits 
HMTT’s hardware clock as lock operations’ timestamp, we try to 
use low-overhead, and precise time collecting approaches to 
ensure fairness in compared mechanisms. Usually, programs use 
rdtsc instruction to obtain time information. LiMiT [16] provides 
a precise, lightweight mechanism to access on-chip performance 
counters including each core’s accurate clock information. Thus, 
we compare HaLock with two software based mechanisms which 
utilize rdtsc instruction (RDTSC-Lock) and LiMiT (LiMiT-Lock) 
to acquire timestamp respectively in our experiments. 

4.2 Memory Interferences of Different Lock 
Profiling Mechanisms 

In this subsection, we will evaluate the memory interferences 
of HaLock, RDTSC-Lock and LiMiT-Lock using the 
aforementioned programs. For all overhead results in the 
experiments, we use original programs without any profiling tools 
as the baselines. 
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4.2.1 Memory Interferences for Different 
Multithreaded Programs 

Figure 4 shows the memory interferences and overall 
behaviors of the different lock profiling mechanisms for different 
multithreaded programs with 8 threads. In general, HaLock incurs 
less perturbation than the two other mechanisms for all tested 
programs.  

As shown in Figure 4, HaLock yields only about 1% extra 
memory requests and 1.2% extra cache misses while RDTSC-
Lock results in more than 4.4% extra memory requests and 3.9% 
extra cache misses on average. For each program, the increased 
memory requests and changed cache miss ratio incurred by 
HaLock are less than that incurred by RDTSC-Lock. Since 
RDTSC-Lock and LiMiT-Lock both use low-overhead 
instructions (rdtsc and rdpmc respectively) to gather timestamps 
without incurring memory requests, the monitoring phase of 
RDTSC-Lock and LiMiT-Lock are the same as HaLock in terms 
of memory requests. Thus, the difference shown in Figure 4 
attributes to the recording phase. 

In the recording phase of RDTSC-Lock, large amounts of 
profiled data are firstly buffered in memory, which would cause 

additional cache eviction operations and thus extra memory 
requests. When the memory buffer are full, these data are dumped 
into disk and this procedure consumers both memory and buffer 
cache. However, HaLock only issues a one-byte uncacheable 
memory request for each lock operation in the whole recording 
phase. Thus, the memory requests and L3 cache miss ratios shown 
in Figure 4(a) and 4(b) are lower than RDTSC-Lock. 

The memory interference behaviors vary largely for different 
programs as shown in Figure 4(a). On one hand, the interferences 
are positively correlated to the lock operation frequency. As the 
lock operation frequency increases, more memory requests are 
issued by each profiling tools. Bodytrack has the highest lock 
operation frequency which means that it has the most potential 
memory interference. However, the situation seems not suitable 
for streamcluster which has 1950 operations per second but only 
1.67% extra memory requests even for RDTSC-Lock. Besides 
lock operation frequency, the internal behaviors, such as memory 
bandwidth and L3 cache miss, of tested programs determine the 
overall effects of interferences on the other hand. Figure 5 
demonstrates the memory bandwidth and L3 cache miss ratio for 
each tested program. The memory bandwidth of streamcluster is 
nearly 89% of the total memory bandwidth of our experiment 
platform. Compared with streamcluster, the memory requests 
issued by RDTSC-Lock are not so obvious. That’s why the 
memory requests overhead is low for streamcluster though 
RDTSC-Lock incurs lots of extra memory requests.  

The above analysis can also illustrate the cache miss ratio 
overhead indicated in Figure 4(b). Interestingly, both increased 
and decreased cache misses exist. The cache miss of tested 
programs are constrained to three factors: originally cache miss, 
cache miss of memory requests issued by profiling tools and 
cache pollution proportion. Generally, the memory requests 
produced by RDTSC-Lock are sequential, and only one request 
may be cache miss ideally for each 8 requests. If the tested 
programs have poor locality and cache pollution is not serious, 
they may suffer from decreased cache misses, such as facesim and 
streamcluster, and vice versa. 

Figure 5. L3 cache miss and memory bandwidth of 
tested benchmarks. 
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Figure 4. Memory interference comparison for different lock profiling mechanisms when running multiple PARSEC 
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After studying the memory interference of RDTSC-Lock and 
HaLock, we can learn the side effects of these interferences in 
terms of runtime in Figure 4(c). On average, the runtime 
overheads incurred by RDTSC-Lock and LiMiT-Lock are 8.1% 
and 7.8% respectively, but HaLock only incurs 0.1% runtime 
overhead. The results demonstrate that RDTSC-Lock and LiMiT-
Lock indeed seriously alter the programs’ execution compared to 
HaLock. Especially for memory intensive programs such as 
streamcluster, the memory resources become so critical that 
additional memory interferences of profiling tools can severely 
change programs’ normal execution, increasing up to 17.1% 
runtime for streamcluster. 

Totally, compared with RDTSC-Lock and LiMiT-Lock, 
HaLock is able to reduce memory interference and just slightly 
affects programs’ execution. 

4.2.2 Scalability for Different Lock profiling 
Mechanisms 

As the number of cores continually increases, scalability is 
significantly important for profiling tools in many-core era. 
Obviously, lock contention will be exacerbated when thread 
numbers are increasing in multithreaded programs, and memory 
interferences would be enlarged for any lock profiling 
mechanisms. We measure the scalability of each profiling 

mechanisms running bodytrack from 8 threads to 512 threads in 
Figure 6.  

When bodytrack scales up to 512 threads, HaLock brings 
about 34.3% additional memory requests, less than half of 
memory overhead brought by RDTSC-Lock shown in Figure 6(a). 
The memory interference gap between HaLock and RDTSC-Lock 
is enlarged as the number of threads increases. Figure 6(b) 
indicates that L3 cache miss has the same tendency as memory 
requests. Thus, HaLock has good scalability than other 
mechanisms. From Figure 6(c), we can conclude that HaLock can 
actually reduce profiling perturbations on programs’ execution 
behaviors even if thread number increases. 

4.3 Lock Behaviors of Programs 
In order to demonstrate the importance of memory 

interference on programs’ execution, we use HaLock, RDTSC-
Lock and LiMiT-Lock to collect profiling data and compare their 
results in terms of execution time related to lock operations. 
Figure 7 illustrates an overview of execution time breakdown by 
synchronization region for all tested programs. Free time is the 
total cycles when threads are not related to any lock operation; 
Lock and Unlock time is the cycles spent in pthread_mutex_lock 
and pthread_mutex_unlock for all threads respectively; Lock 
Hold time is defined as summation of cycles each thread holds for 

Figure 7. Comparison of lock behaviors collected by different mechanisms for PARSEC benchmarks 
running with 8 threads. 
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each lock. We consider those error traces having huge or negative 
cycles as Unknown region.  All the time regions shown in Figure 
7 are normalized to the total execution cycle for each thread. 

We observe that the lock behaviors collected by HaLock, 
RDTSC-Lock and LiMiT-Lock are substantially different. Firstly, 
the proportions of profiled region by these mechanisms are varied, 
and the memory interferences determine the gap size. As shown 
in Figure 4(a), bodytrack and vips suffer from the most serious 
memory interferences, and thus their lock behaviors are sharply 
differed. Take bodytrack as an example, free time is 58.1% of the 
total cycle obtained by RDTSC-Lock, only 24.6% by LiMiT-
Lock, but nearly 81% by HaLock. Secondly, Unlock time of all 
programs measured by HaLock are not negligible while the 
corresponding time are trivial obtained by LiMiT-Lock and 
RDTSC-Lock. Since unlock operation requires invoking system 
calls to awake those threads waiting on the lock and hence traps 
into interrupt, unlock time should not be as small as shown by 
LiMiT-Lock and RDTSC-Lock. 

Since all the current profiling tools inevitably bring about 
memory interferences to target programs, we have proved that 
HaLock has the least memory interferences than current software-
based mechanisms in above subsections. Thus, we can conclude 
that current mechanisms have non-negligible distortions and 
inaccuracy problems. HaLock can actually provide the most 
accurate lock behaviors than other current mechanisms. 

5. RELATED WORK 
Dedicated hardware for memory trace: Various hardware 

monitors are able to monitor memory trace online.  Besides 
HMTT utilized in this work, other hardware monitors such as 
BACH [20], SHRIMP [24], Alliant System [14], can also collect 
memory traces online. BACH utilizes a logic analyzer to interface 
with host system and buffer the collected traces. When the buffer 
is full, the host system is halted by an interrupt and the traces are 
moved out. However, this halting mechanism may alter original 
behaviors of programs. SHRIMP performance monitor is a 
hardware monitor with several novel features including multi-
dimensional histograms, page tags, histogram categories, and a 
threshold interrupt mechanism. Torrellas et al. [29] present a 
similar hybrid hardware/software approach which could 
potentially be used for lock profiling. However their hardware 
monitor relied on MIPS buses which were proprietary, and the 
software implementations are totally different. 

Performance tools: There are numerous studies on 
analyzing lock contention.  Almost all of them focus on 
monitoring phase regardless of how to optimize data recording 
phase. 

IBM’s jucprofiler [5] analyzes Java’s concurrent locks. It 
mainly identifies threads’ contention time and waiting time 
caused by contending Java’s concurrent locks. The collected 
information by jucprofiler is quite similar with our work. 
However, jucprofiler records above information in local memory 
and local disk. HPCToolkit [28] uses runtime information 

associated with locks to blame lock holders for the idleness of 
spinning threads. Thread Profiler [3] measures routines’ effective 
parallelism and distinguishes between interaction effects such as 
cruise, impact and blocking time of each thread. Lockmeter [12] 
and LockStat [6] are tools for analyzing locks in a multiprocessor 
Linux kernel.  

Others utilize hardware performance events to assist lock 
profiling. LiMiT [16] enables precise, lightweight interface to on-
chip performance counter which allows precise reading of 
virtualized counters by one or two orders of magnitude faster than 
current access techniques. The synchronization characteristics of 
PARSEC benchmark detected by LiMiT are different from 
characteristics shown by others performance counter tools which 
have larger overheads. We compare LiMiT with our approach, 
and show that their synchronization characteristics are also varied 
a lot because of overheads in data recording phase. Hardware 
performance events are also exploited by other tools, such as 
Inter’s VTune [4], AMD’s CodeAnalyst [1], ProfileMe [15] and 
so on. 

6. CONCLUSIONS 
In this paper, we have studied the memory interferences 

incurred by current lock profiling tools storing profiling data into 
memory or disk. Then, we have proposed a hardware assisted lock 
profiling tool (HaLock) which is able to significantly reduce the 
memory interferences and scales well up to hundreds of threads 
by recording all the lock behavior traces through the hardware 
HMTT.  

Experimental results show that HaLock incurs only 3.8% 
extra memory requests and 4% additional cache miss for even a 
lock-intensive workload with 8 threads, and has well scalability 
up to 512 threads. We also illustrated that the start-of-art lock 
profiling tools such as LiMiT have serious memory interferences 
and non-negligible inaccuracy problems. Since the 
synchronization behaviors obtained by LiMiT have big difference 
from those obtained by HaLock, we argue that hardware-enabled 
lock profiling mechanism is necessary to analyze lock behaviors. 
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