
Evaluation and Optimization of Breadth-First Search on NUMA Cluster

Zehan Cui1,2, Licheng Chen1,2, Mingyu Chen1, Yungang Bao1, Yongbing Huang1,2, Huiwei Lv1,2

1 State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
2 Graduate School of Chinese Academy of Sciences

{cuizehan, chenlicheng, cmy, baoyg, huangyongbing, lvhuiwei}@ict.ac.cn

Abstract— Graph is widely used in many areas. Breadth-First
Search (BFS), a key subroutine for many graph analysis
algorithms, has become the primary benchmark for Graph500
ranking. Due to the high communication cost of BFS, multi-
socket nodes with large memory capacity (NUMA) are
supposed to reduce network pressure. However, the longer
latency to remote memory may cause problem if not treated
well. In this work, we first demonstrate that simply spawning
and binding one MPI process for each socket can achieve the
best performance for MPI/OpenMP hybrid programmed BFS
algorithm, resulting in 1.53X of performance on 16 nodes.
Nevertheless, we notice that one MPI process per socket may
exacerbate the communication cost. We propose to share some
communication data structure among the processes inside the
same node, to eliminate most of the intra-node communication.
To fully utilize the network bandwidth, we make all the
processes in a node to perform communication simultaneously.
We further adjust the granularity of a key bitmap for better
cache locality to speed up the computation. With all the
optimizations for NUMA, communication and computation
together, 2.44X of performance is achieved on 16 nodes, which
is 39.2 Billion Traversed Edges per Second for an R-MAT
graph of scale 32 (4 billion vertices and 64 billion edges).

Keywords-Graph; BFS; NUMA; MPI/OpenMP; Allgather

I. INTRODUCTION
Exploration of large-scale graphs is commonly used in

many areas, such as bioinformatics, astrophysics, data
mining, social network analysis, and so on. Breadth-First
Search (BFS) is a key building block for many graph
analysis algorithms, such as finding spanning tree, shortest
path, connected component and max flow. The recently
announced Graph500 ranking [1] as opposite to Top500, is
aimed to rank computers according to their capability of
processing data-intensive tasks. BFS has been chosen as the
primary benchmark for Graph500.

Due to the integration of memory controller into
microprocessor chip for reducing memory access latency as
well as the high-speed interconnects such as HT and QPI
connecting multiple processors, non-uniform memory access
(NUMA) architecture has been the dominated computer
architecture in server machines, where local memory is
directly attached to each processor instead of shared bus and
can be accessed through cross-chip interconnects from other
processors. For example, the newly announced processors
such as Intel Xeon 7500 / E7-8800 series (Nehalem-EX/
Westmere-EX) begin to support up to eight sockets in a
single node without the help of third-party node controller.

The BFS of large-scale graph has unique features
compared with previous high performance computing
applications. It suffers little locality in all hierarchies – cache,
local memory and global distributed memory. The partition
of a graph is still a very difficult problem. So far no partition
methods can radically cut down the communication cost,
which is a dominated issue for BFS. A promising way is to
use fewer nodes to lighten the communication traffics, with
each node of higher memory capacity and capable of
processing larger part of graph. NUMA node with 4 or more
CPUs can satisfy such need for memory and processing
capacity.

Though NUMA can provide a much powerful node with
more than one processor - more cores and memory, it can be
a significant problem for applications due to the congestion
on cross-chip interconnects, long latency and potential
bandwidth saturation of remote memory accesses [10, 28-30,
32]. For example, it is shown in [32] that the performance of
a multi-threaded program when running on 4 cores (1 socket)
and 8 cores (2 sockets) are almost the same. More cores do
not result in better performance due to the NUMA effect.

A number of studies have been done for BFS on cluster
system [11, 40, 48], but few of them have taken the effect of
NUMA architecture of cluster nodes into account. Other
studies [7, 9, 19, 47] try to maximize the parallelism of BFS
on multi-core platform, which can be adopted as the intra-
node scheme in cluster system. An approach has been
proposed in [7] to avoid random memory accesses and
atomic memory updates across sockets by modifying the
algorithm, but its performance on cluster system has not been
evaluated.

On the other hand, parallel BFS algorithms for cluster are
always implemented as MPI/OpenMP hybrid programmed
programs [40] to utilize the hierarchical hardware. How to
map such hybrid programmed applications to NUMA cluster
node has been studied in [36, 44], but BFS has not yet been
studied in this scope. In [36], the authors analyzed different
mapping methods but didn’t give an universal optimal
method, for it is related to both the machine topology and
application behavior. In [44], using MPI across sockets and
OpenMP within sockets is recommended through evaluation
of two NPB-MZ benchmarks [45] and a real application.

In this paper, we investigate how to achieve better
performance for BFS on a multi-socket NUMA cluster. We
choose a BFS algorithm, which we believe to be highly
efficient, and optimize the algorithm through analyzing both
computation and communication characteristic on NUMA
architecture. We first demonstrate that the performance of
BFS on an 8-socket NUMA node can be improved by up to

2012 IEEE International Conference on Cluster Computing

978-0-7695-4807-4/12 $26.00 © 2012 IEEE

DOI 10.1109/CLUSTER.2012.29

438

74.4% by spawning one process per socket instead of one
process per node to exploit computing power. Nevertheless,
simply spawning one process per socket exacerbates the cost
of collective communication, especially when the number of
sockets in a node is large. To solve this problem, we take
advantage of the read-only nature of some data structure to
share them among the multiple processes inside a node, and
employ a scheme to perform collective communication in
parallel to fully utilize the network bandwidth. Furthermore,
we find that choosing an appropriate granularity for a
frequently accessed bitmap structure according to its sparsity
can improve the algorithm’s performance. By utilizing a
relative small system – 16 NUMA nodes (1,024 cores), we
achieve 39.2 billion traversed edges per second (TEPS) for
an R-MAT graph with 4 billion vertices and 64 billion edges,
which ranked No. 16 in the Graph500 list of June 2012. Our
main contributions are:
• We demonstrate that simply spawning one process per

socket to reduce cross-socket memory accesses can
improve performance for BFS by about 74.4% for single
node and 52.5% for 16 NUMA nodes, compared to one
process per node with uniformly data distribution.

• We propose two approaches to optimize collective
communication for NUMA cluster, sharing
communication buffer and parallelizing allgather, which
can boost the performance by 69.0% more for 16 nodes.

• By selecting an appropriate granularity for a key bitmap,
we can further improve the performance by 22.6% to
39.2 billion traversed edges per second for 16 nodes.

• Using these methods overall 2.44X performance is
achieved. We believe these approaches can be migrated
to other applications with similar characteristic.

The following of paper is organized as below: Section II
introduces the problems of BFS and NUMA optimization;
our optimizations for both communication and computation
are presented in Section III; Section IV performs detailed
evaluation; some related works are reviewed in Section V.
Section VI gives a conclusion.

II. BACKGROUND AND MOTIVATION

A. BFS Algorithms
A graph G(V,E) is composed of a set of vertexes V and a

set of edges E. Given a particular source vertex r V, BFS
explores the graph G level by level to discover all the
vertices that can be reached from vertex r, and generates a
BFS tree rooted at vertex r. The set of vertices reached in a
level is called frontier.

In each level, the current frontier is explored to find all
adjacent and unreached vertices, which form the next frontier.
The exploration of frontier can be performed in two ways: 1)
the top-down approach – for each vertex in the current
frontier, its adjacent vertices are checked and unvisited ones
are put into the next frontier; 2) the bottom-up approach – for
each unvisited vertex in the graph, it is put into the next
frontier only if at least one of its adjacent vertices is in the
current frontier.

The two approaches have their respective advantages,
which has been well examined in [9]: the top-down approach

performs well when the frontier is small, while the bottom-
up approach is more efficient when the frontier is large.

Utilizing the complementation of the two approaches, a
hybrid approach is proposed in [9], which uses top-down
approach to explore the frontier when it is small, and uses
bottom-up approach when the frontier is large. This is
considered to be the most efficient algorithm of BFS on
multicore platform. Our experiment result on a 64-core
platform shows that the hybrid approach (8 MPI processes,
each of 8 OMP threads) is 27.3 times faster than the top-
down approach (pure MPI, 64 MPI processes) and 4.7 times
faster than the bottom-up approach (8 MPI processes, each
of 8 OMP threads) using the evaluation method of Graph500.

The Graph500 reference codes [1] contain several
parallel implementations of BFS for distributed-memory
clusters, which has been evaluated in [40]. The mpi_simple
version is an implementation of the top-down approach,
while the mpi_replicated version is an implementation of the
bottom-up approach. To perform BFS in parallel on a
distributed-memory cluster, the entire graph is partitioned
into np parts, where np is the number of MPI processes; each
MPI process searches one part and communicates with other
processes when needed.

Based on the Graph500 reference codes [1], we
implement the hybrid BFS algorithm [9] for distributed-
memory clusters, by adding a data conversation procedure
and a switching function, and using hybrid MPI/OpenMP
programming.

The graph is generated using R-MAT algorithm [13], the
distribution of which is scale-free. So the frontier of each
level first ramps up and then down exponentially [9], which
results in a three-phase BFS procedure: first top-down, then
bottom-up, and finally top-down. Fig. 1 illustrates the
procedure of our parallel implementation of the hybrid BFS
algorithm.

Figure 1. Overview of a parallel implementation of hybrid BFS
algorithm. in_queue is the current frontier, out_queue is the next
frontier, and both are bitmaps for all vertices. Each MPI process owns
an copy of in_queue, but only part of out_queue, so all processes need
to perform allgather to construct the next frontier. The *_summary are
the bitmaps for in_queue and out_queue respectively.

439

B. Characteristics of hybrid BFS algorithm

Fig. 1 gives an overview of hybrid algorithms: most of
vertices are reached in the bottom-up procedure [9], which
consumes most of the time, as illustrated in Fig. 11. So this
work only focuses on the bottom-up procedure, the
characteristics of which are listed as follow: (for detail
information about hybrid algorithm and implementation of
bottom-up procedure, please refer to [9] and [40]
respectively.)

1) Separated Computation and Communication Phases
It can be clearly seen from Fig. 1 that computation and

communication phases in bottom-up procedure are separated.
In the computation phase, the access to the vertices and
edges are randomly across large data set and little data is
reused, resulting in low locality of both spatial and temporal.

The communication phase is quite simple - two allgather
operations are performed. The first allgather for in_queue
consumes most of the time, for the size of in_queue is 64
times of in_queue_summary.

2) in_queue_summary can speed up the check operation
of in_queue

in_queue is the bitmap for all vertices (local and remote).
The corresponding bit of a vertex in in_queue is 1 means this
vertex is visited in last level. For each vertex traversed in the
computation phase, its corresponding bit in in_queue is
checked [40].

in_queue_summary, which is the bitmap for in_queue, is
used to speed up the check operations. Generally, one bit in
in_queue_summary represents 64 bits of in_queue as in the
Graph500 reference codes, which means only when the
contiguous 64 bits of in_queue are all 0, the corresponding
bit of in_queue_summary will be 0.

In general, in_queue_summary has much better cache
locality than in_queue due to its much smaller size, so if we
check both of them simultaneously, the result of
in_queue_summary will return faster – if it is 0, there is no
need to wait for the result of in_queue, which will definitely
be 0. The check operations are speeded up in this way. If the
scale of graph is 32 (232 vertices), the size of in_queue and
in_queue_summary are 512 MB and 8 MB respectively.

3) in_queue & in_queue_summary are Read-only and
Identical among all processes in Computation Phase

In the parallel implementation, each MPI process has its

own copy of in_queue and in_queue_summary. These two
data structures are frequently checked (read-only) in the
computation phase and updated by the allgather operations
in the communication phase. More clearly, all processes will
have the same data after allgather operations, and will not
change them until next allgather.

C. NUMA Architecture and its influence on BFS
NUMA architecture is becoming the dominating node

architecture in today’s commodity cluster. Each CPU has its
own attached memory and can access other CPUs’ memory
through high-speed interconnects, such as QPI and HT. The
memory accesses of such system are non-uniform – local
memory accesses are of much lower latency and higher
bandwidth. With the new high-end CPUs such as Nehalem-
EX/Westmere-EX, systems with up to eight sockets can be
achieved. Fig. 2 is an example of eight-socket node.

NUMA has provided much larger capacity of shared
memory or even shared cache, but remote memory accesses
suffer much longer latency and lower bandwidth than local
memory accesses, which, if not properly handled, may lead
to serious performance reduction [10, 28-30, 32].

For BFS, large portion of memory accesses are to the
graph, which may go into the remote memory and seriously
degrade the performance. For example, if we use multi-
thread on the platform shown in Fig. 2 and spread the graph
across the eight sockets, each thread may randomly access
the entire graph, which means about 7/8 of the accesses will
go into remote memory through QPI. Fig. 3 shows that when
all accesses are uniform to local memory, 8 cores can
improve the performance by 6.98 times compared to 1 core;
however, when NUMA effect is present, 64 cores can only
improve the performance by 2.77 times compared to 8 cores.

D. A Method To Better Use NUMA – Pros and Cons
For MPI/OpenMP hybrid programmed application, the

authors in [44] has recommended to use MPI across sockets
and OpenMP within the socket. The method can be achieved
by spawning one MPI process per socket, and binding them
to each socket. The binding to socket operation is supported
by both Open MPI [3] and MVAPICH2 [2] by using “-bind-
to-socket -bysocket” and “-genv MV2_ENABLE_AFFINITY
1” flags respectively, or shell script in [44].

Figure 3. Speedup of BFS algorithm when running on 1 core, 8
cores and 64 cores. One thread per core is used in all three cases.

Figure 2. Topology of an eight-socket node. Eight Intel Xeon X7550
CPUs are connected through QPI.

440

1) Pros: eliminate cross-socket accesses in computation

phase and fully utilize inter-node network bandwidth in
communication phase

This scheme results in better locality since all threads
only access their local memory and remote accesses only
happen during the MPI communication.

On the other hand, multiple MPI processes performing
inter-node communication can take advantage of the bi-
directional link bandwidth, especially when multiple network
ports exist. Fig. 4 shows the achieved bandwidth between
two nodes using OSU micro-benchmark [4] when different
number of MPI processes perform inter-node communication.
It shows that when eight processes per node are
simultaneously participating in communication, the highest
bandwidth is achieved, while one process per node can only
utilize about half.

2) Cons: multiple processes per node will exacerbate
the cost of communication

The cost of communication will increase due to increased
number of processes – multiple processes per node will
introduce extra intra-node communication. Though intra-
node communication through shared memory is faster than
inter-node, the communication time spent within nodes may
take an unexpectedly high percentage [23]. Some work have
been done to optimize intra-node communication, such as
improving cache efficiency [12, 21], topology-aware process
affinity [27] and overlapping with inter-node communication
[26, 31].

In the following, we take allgather for example to
estimate its impact on collective communication. Given the
total data size is m bytes, and the number of MPI processes is
np, then each process owns m/np bytes of data. The total
amount of data transmitted during allgather is

 (m/np)*(np-1)*np = m*(np-1) (1)

where (np-1) means each process need to receive data from
the other (np-1) processes; np means all the np processes
need to receive the same amount of data.

If the total data size does not change, the total amount of
data transmitted is about proportional to the number of
spawned processes. If one MPI process is spawned per

socket instead of per node for system in Fig. 2, the amount of
data transmitted will increase by 8 times.

3) Apply to BFS
The hybrid BFS algorithm presented in Fig. 1 can fit this

method well for two reasons: 1) the graph is intrinsically
partitioned to all processes, so each MPI process will only
access its local graph inside the socket; 2) the data
transmitted through MPI across sockets, which are bitmaps
for vertices, are much smaller than the graph.

The computation phase of hybrid BFS algorithm will
benefit from the restriction of accesses of graph to the local
memory. If we apply the method to the example in Fig. 3,
speedup of 6.31X can be achieved instead of 2.77X on 64
cores relative to 8 cores. Our evaluation in Section IV has
demonstrated that spawning one MPI process per socket and
binding it to socket can improve performance of hybrid
algorithm for 74.4% on single node, compared to the best
result of one MPI process per node.

On the other hand, the hybrid BFS algorithm will also
suffer from the increasing communication overhead of the
two allgather shown in Fig. 1. Our evaluation in Section V
has shown that when 8 nodes are in use, spawning one
process per socket results in 2.34 times of execution time in
each bottom-up communication phase, compared to one
process per node. This leads to that 54% of total time is spent
on bottom-up communication.

Our goal is to refine the method to maintain its benefits
for computation phase and minimize the cost of the allgather
in Fig. 1, by taking advantage of certain characteristic of the
hybrid BFS algorithm.

III. OPTIMIZATIONS
In this section, we explain several optimizations we have

done for both communication and computation: the first
optimization will achieve our goal proposed in Section II by
sharing some data structure among processes inside a node;
the second optimization can further improve the performance
of communication by fully utilizing the network bandwidth;
the third optimization choose an appropriate granularity for
the bitmap in_queue_summary to maximize the speedup of
computation.

A. Sharing Communication Data among Processes
Prior work has done some optimization for allgather

when there are multiple processes in one node. For example,
leader-based approach [31] selects one process per node as a
leader and the other processes inside the same node are
children, the allgather is divided into 3 steps: 1) aggregate
data to leader process; 2) perform allgather between leaders;
3) distribute data to child processes. Fig. 5a illustrate the
mechanism of this approach, which can eliminate extra
memory copies between different channel buffers and allow
overlap of intra- and inter- node communication [31]. We
implement this approach by using gather from children to
leader for step 1, allgather between leaders for step 2, and
broadcast from leader to children for step 3. Fig. 6 shows the
time spent on each step, which is normalized to the default
implementation of allgather in Open MPI 1.5.5.

Figure 4. Communication bandwidth between two nodes (dual
Infiniband ports each). More processes per node communicating
simultanuously results in higher bandwidth. ppn is short for
“number of processes per node”.

441

Fig. 6 shows that the intra-node communication actually

takes a much larger portion of time than inter-node
communication in this case. This means that even the best
way to overlap intra- and inter- node communication cannot
hide the extra intra-node communication cost introduced by
spawning one process per socket.

Fig. 5b illustrates how we share some data structures
among processes inside the same node to eliminate intra-
node communication of conventional leader-based allgather.
The sharing among processes is implemented through mmap.

1) shared in_queue to eliminate step 3
As discussed in Section II, the in_queue is actually read-

only and is the same among all processes. This motivates us
to share one in_queue between leader and its children, so that
time consumed by broadcast (step 3 of Fig. 5a) is completely
eliminated. Although the shared in_queue will bring certain
memory accesses across sockets, it won’t cause severe
problem for several reasons:

a) smaller data size: the key point that we can tolerant
cross-socket accesses for in_queue but not for the graph is

that the data size of in_queue is very small compared to the
graph itself, usually less than one thousandth.

b) larger cache size: sharing one in_queue among
multiple sockets will equivalently enlarge the usable cache
capacity for in_queue, which may achieve better cache
locality.

c) higher access frequency: in_queue is now more
frequently accessed by all the cores of multiple sockets,
which may result in higher possibility to be cached.

d) faster remote cache access: if in_queue is present in
the remote cache, it can be accessed even faster than from
local memory. The latency of remote cache is considered to
be lower than local memory [35]. Even if the data is in local
memory, the CPU still needs to snoop remote cache to
check if the required data is present there for Intel Nehalem
architecture [39].

2) shared out_queue to eliminate step 1
Further on, we can make all processes inside the same

node share out_queue too; then the leaders can directly
access the other processes’ out_queue and perform allgather,
so that the time spent on step 1 in Fig. 5a is eliminated. The
sharing scheme is a little different with that of in_queue. The
out_queue of each process is different with each other, so
there are multiple out_queue in the shared space among
processes. Each process is in charge of the update of one
out_queue, but can read the other out_queue. So the leaders
can directly perform allgather without aggregation of data.

The in_queue_summary and out_queue_summary can be
dealt in the same way.

B. Parallelizing Allgather
In Fig. 5b, only one process per node participates in the

inter-node allgather operation, the inter-node network
bandwidth cannot be fully used as shown in Fig. 4. This
motivates us to let multiple processes perform allgather
simultaneously to decrease inter-node communication time.

Figure 6. Excuation time of default implementation in Open MPI
1.5.5 and leader-based implementation for allgather. 16 eight-
socket nodes and totally 128 processes are used to allgather 64/512
MB data, which is exactly the size of in_queue at scale 29/32.

(a) Prior work (b) Our optimization

Figure 5. Prior work and our optimization for allgather. (a) Prior work: leader-based allgather. Initial state, one process owns one part of the data;
STEP 1, aggregate data to leader process; STEP 2, perform allgather between leaders; STEP 3, distribute data to child processes. (b) Our optimization:
share data among processes inside the same node. Initial state, one process conrresponds to only one part of the data in the shared space; STEP 1, the
leaders perform allgather for the data in the shared space; after step 1, all processes can see and directly use the result from the shared space.

442

Fig. 7 illustrates our mechanism of utilizing multiple

processes to perform allgather in parallel:
• All the processes are divided into several subgroups,

labeled with different colors. Each process in a node
belongs to exactly one subgroup.

• Each subgroup performs allgather for the data in the
subgroup, also labeled with different colors.

• All the subgroups perform allgather in parallel, each
resulting in only part of the final data.

• The intermediate results of all subgroups joint into the
final result. The joint phase does not need any operation
actually – the results of each subgroup are mapped to a
contiguous virtual space during their allocation, so the
final result is already there after allgather.

Though multiple processes participate in allgather, the
amount of data transmitted does not change, and the network
bandwidth will be better utilized. Suppose that the total data
size is still m bytes, the number of MPI processes per node is
8, and the number of all processes is np, then according to
(1), the total amount of data transmitted can be calculated as

 8 * (m/8)*(np/8-1) = m*(np/8-1) (2)

where 8 is the number of subgroups performing allgather,
(m/8) is the data size of each subgroup, (np/8) is the number
of processes in each subgroup. It indicates that, the amount
of data transmitted is exactly the same with that of one
process per node responsible for allgather all data.

The parallelizing allgather scheme is similar with multi-
leader-based allgather algorithm [21], the key difference is
that the multi-leader-based allgather scheme is aimed to
optimize intra-node communication by reducing cache
contention [21], and each leader still need to obtain all the
data, which result in more data transmission than our
parallelizing allgather.

C. Granularity of Bitmap
As discussed in Section II, the bitmap for in_queue –

in_queue_summary can speed up the check operations when

the corresponding bit is 0, due to its better cache locality and
lower access latency.

However, as the scale of graph gets larger, the size of the
bitmap gets larger too, resulting in lower cache locality.

The conventional granularity for the bitmap is 64 – the
size of “unsigned long”. If we increase the granularity – let
one bit in the bitmap represents more bits in the in_queue as
shown in Fig. 8, there will be advantages and disadvantages.

1) advantages: smaller size, better cache locality
As the granularity increasing, the size of bitmap gets

smaller, thus, the bitmap will have better cache locality and
higher possibility to be cached in faster high-level caches.

2) disadvantages: less zeros, less speedup
On the other hand, the proportion of zeros will decrease,

since as long as there is one bit 1 in the in_queue, the
corresponding bit in the bitmap will be 1, no matter what the
other bits in the in_queue are. For example, if in_queue is
00010010b, for granularity of 2, the bitmap will be 0101b
with 50% zeros; for granularity of 4, the bitmap will be 11b
with no zero. As discussed before, the bitmap is only useful
when it is 0, so less zeros means less opportunity of speedup.
It is worth to mention that, the bitmap is only used in
bottom-up procedure, during which most of the vertices are
visited and there are lots of 1s in in_queue, so the granularity
cannot be very large.

The bitmap can tolerate the increase of granularity to
some extent, since as the scale of graph gets larger, there will
be more contiguous zeros in the bitmap.

So there may be a trade-off point for the granularity of
bitmap: the proportion of zeros does not drop too much
while reducing its size for better cache locality.

IV. EVALUATIONS

A. Experimental Setup
We evaluated the hybrid BFS algorithm on a “thousand-

core” platform, which consists of 16 eight-socket NUMA
nodes. The detail configuration of each node is illustrated in
Table I, and Fig. 2 gives the topology of the eight CPUs. The
SMT is disabled, so there are exactly 1024 cores; the DVFS
is also disabled. The two Infiniband ports of each node are
connected to one 36-port switch. It is worth to mention that
there is one weak node in the 16 nodes, the communication
performance of which is weak compared to other nodes due
to unknown reason.

Figure 8. Increase the granularity of in_queue_summary, resulting
in a much smaller bitmap.

Figure 7. Parallelizing allgather – refinement of step 1 in Fig. 5b.
Processes are divided into several subgroups, labeled with different
colors. Each subgroup performs allgather for part of data in parallel.
All intermediate results of each subgroup joint into the final result.

443

The hybrid BFS algorithm (Fig.1) is implemented

according to [9], which is MPI/OpenMP hybrid programmed.
Open MPI 1.5.5 [3] is used as implementation of MPI.

The evaluation method of Graph500 [1] is adopted. The
size of input graph is defined by its SCALE, which is the
logarithm base two of the number of vertices. In each single
test, 64 different vertices are random selected as the roots of
64 BFS iterations. Each iteration reports its TEPS (Traversed
Edges per Second), and the final result is calculated as the
harmonic mean of the TEPS of 64 iterations. Besides the
final TEPS, we perform detailed profiling for each test.
When the profiling results are given, they are the average of
64 BFS iterations.

We perform most of the evaluations by spawning one
process per socket (eight processes per node) and binding it
to socket as discussed in Section II; otherwise indicated.

B. Overview
Fig. 9 gives an overview of the performance of all the

optimizations for hybrid BFS algorithm on 16 nodes, where
“+ xx” means the corresponding optimization explained in
Section III is implemented on the previous version.

We demonstrate that by simply spawning 1 process per
node and binding it to socket, 1.53X performance can be
achieved for “Original” implementation. With all our
optimizations together, the speedup is up to 2.44X relative to
“Original.ppn=1” and 1.60X relative to “Original.ppn=8”.
When compared to “Original.ppn=8”, “Share in_queue”
improves the performance by 34.1% for its great reduction of
communication cost; “Share all” and “Par allgather” can
give another 6.5% and 4.6% of speedup respectively;
“Granularity” can further improve the performance by
14.8%.

C. NUMA Optimization
We evaluate the “Original” implementation under scale

28 on single node when spawning different number of
processes with different mpirun and numactl flags, and
varying the number of OpenMP threads. The OpenMP

dynamic scheduler [5] is used to avoid load-balance problem,
so when we run 64 threads total (equal to core number), the
results are almost the best. Fig. 10 only illustrates the best
results among various thread numbers on single node.

For single node, the performance of “ppn=8.bind-to-
socket” is best as shown in Fig. 10, which is 1.74X of
“ppn=1.interleave” and 2.08X of “ppn=8.noflag”.
“ppn=1.interleave” has better performance than
“ppn=1.noflag”, because the graph is equally interleaved
across all sockets in the former, so all the memory bandwidth
of all sockets can be utilized. The low performance of
“ppn=8. noflag” indicates that the multiple threads of one
process are spread across multiple sockets if binding is not
used, which results in cross-socket memory accesses.

Fig. 11 shows the detailed profiling results of the
“Original” implementation to show how “ppn=8.bind-to-
socket” affects different phases of BFS. It can be clearly seen
that “ppn=8.bind-to-socket” greatly speeds up both the
top-down and bottom-up computation phase. The 1.58x

Figure 10. Performance of “Original” implementation with various
execution policy. Graph scale of 28 is evaluated on 1 node. “noflag”
means just simply execution of the program without special numactl or
mpirun flags; “interleave” means using the flag “--interleave=all” for
numactl; “bind-to-socket” means using the flag “--bind-to-socket --
bysocket” for mpirun. “bind-to-socket” only works when more than 8
processes are spawned, otherwise partial of the 8 CPUs will be idle.

Figure 9. Overview of all optimizations. Graph scale of 32 is
evaluated on 16 nodes. “Original” means the initial implementation.
All versions spawn 8 procs per node and bind them to sockets, except
“Original.ppn=1” with 1 proc per node. “Share in_queue” means
in_queue is shared; “Share all” means in_queue, out_queue,
in_queue_summary, and out_queue_sumamry are all shared; “Par
allgather” means allgather for in_queue is done in parallel;
“Granularity” means the best result of all tested granularities.

TABLE I. NODE CONFIGURATION

CPUs

Eight Intel Xeon X7550 processers
each contains:
 8 cores, running at 2.0GHz, SMT disabled

32KB/32KB private L1 D/I Cache per Core
256KB private L2 Cache per Core
18MB shared L3 Cache per CPU
Four 6.4GT/s fully-width QPI
Four 6.4GT/s Intel SMI channels, expanded to eight

DDR3 channels after Intel SMB

Memory

Half (four) of the eight DDR3 channels per CPU are
populated with 8GB DDR3-1066 DRAMs
17.1GB/s1 peak memory bandwidth per CPU
Total 256GB memory per node

Network 2x 40Gbps Infiniband Ports per node

1. Intel SMB can only support DDR3 burst length of four, so only half of the
theoretical bandwidth of one DDR3 channel can be achieved. [6]

444

speedup of bottom-up computation can be fully attributed to
the reduction of remote memory access, because unlike [7],
there are no atomic memory updates in bottom-up procedure.
In “ppn=1.interleave”, one socket owns 1/8 of the graph, so
7/8 of the memory accesses to the graph will go into the
remote memory. However, in “ppn=8.bind-to-socket”, the
graph is naturally partitioned into 8 parts, and the remote
memory accesses to the graph in the computation phase is
now replaced by the two allgather for in_queue and
in_queue_summary in communication phase as shown in Fig.
1. Although the intra-node allgather still needs memory
accesses across sockets, the amount of data accesses is much
smaller than that of graph.

For the 16-node cluster, “ppn=8.bind-to-socket” can still
provide 1.53X performance than “ppn=1.interleave”, as
shown in Fig. 9.

1) Communication Cost
In Section II, we discuss the amount of data transmitted

in communication phase in theory. We measure the actual
communication time here. Fig. 12 illustrates the cost of
communication in bottom-up procedure of the “Original”

implementation when weak scaling from 1 node to 8 nodes.
It can be seen from Fig. 12 that the cost of each

communication phase grows exponentially as weak scaling;
besides, the cost of spawning eight processes per node is
much larger than one process per node. The cost of
communication phase is the two allgather for in_queue and
in_queue_summary. As weak scaling, the size of these two
data structures grows exponentially, which makes the cost of
each communication phase grow exponentially too. Besides,
since “ppn=8.bind-to-socket” has 8 times of processes, its
communication cost is much larger than “ppn=1.interleave”,
about 2.34 times when 8 nodes are in use.

As a result, the proportion of time spent on
communication quickly grows from 12% for one node to
54% for 8 nodes. The size of graph that one node needs to
search stays the same as weak scaling, so the time spent on
computation phase does not changes too much. Due to the
exponentially growing communication cost as weak scaling,
the proportion it occupies will increase too, which will
finally dominate the execute time as continuously scaling.

In summary, although “ppn=8.bind-to-socket” has great
advantage on computation, its high communication cost
makes it less scalable.

D. Communication Optimization
In this subsection, we evaluate the effect of the two

optimizations we propose in Section III – “share data” and
“parallelizing allgather” on communication cost.

1) Absolute Time
Fig. 13 shows the average time of each communication

phase in bottom-up procedure as weak scaling, which is
mainly the two allgather as shown in Fig. 1. The result of 16
nodes does not have much meaning when compared to 8
nodes or others, since there is one weak node whose
Infiniband performance is weak as mentioned before.

Fig. 13 proves that the abovementioned optimizations
have greatly reduced the communication cost, 4.07X for
eight nodes. “Share in_queue” has the most significant
effect, which can cut off about half of the communication
cost. This is because most of the communication cost is spent
on allgather for in_queue due to its larger size, and the cost
of step 3 in Fig. 5a can be fully eliminated. “Share all” can
eliminate the cost of step 1 and step 3 in Fig. 5a for the

Figure 13. Reduction of average time spent on each bottom-up
communicaiton phase. The results of 1, 2, 4, 8 and 16 nodes
correspond to the graph scale of 28, 29, 30, 31, and 32.

Figure 11. Execution time breakdown and speedup of computation
procedure for the “Original” implementation. Graph scale of 28 is
evaluated on single node. Switch represents the time consumed on
switching top-down to bottom-up and vice versa, which need to
convert corresponging data structure. Stall represents the idle time due
to load unbalance.

Figure 12. Communication cost of the “Original” implementation
when weak scaling from 1 node to 8 nodes. The bars represent the
absolute time of each communicaiton phase in bottom-up procedure
for “ppn=1.interleave” and “ppn=8.bind-to-socket”. The curve
represents the proportion of all the bottom-up communicaiton time
relative to total execution time for “ppn=8.bind-to-socket”. The scales
of graph for 1, 2, 4, and 8 nodes are 28, 29, 30, and 31 respectively.

445

both allgather for in_queue and in_queue_summary. “Par
allgather” can further reduce the cost of step 2 in Fig. 5a (or
step 1 in Fig. 5b) by better utilizing the two Infiniband ports.

2) Proportion and Weak Scalability
If the time spent on communication can be reduced, the

hybrid BFS algorithm will be scaled to much more nodes,
because the time spent on computation does not change too
much as discussed before. Fig. 14 illustrates the proportion
of time spent on bottom-up communications relative to the
total execution time. The proportion of time spent on top-
down procedure, stall and switch together occupy less than
20% of total time, even in the case that the bottom-up
communication time has been optimized to minimum. The
optimization for these cost are out of scope for this paper.

It can be seen from Fig. 14 that the proportion of time
spent on bottom-up communication has been greatly
reduced. For example, the proportion on eight nodes can be
reduced from 54% without any optimizations to 18% with all
the optimizations for communication implemented. This will
lead to much better scalability.

Fig. 15 illustrates the weak scalability from 1 node to 16
nodes. The optimizations for communication result in better
scalability than “Original.ppn=8”. The inferior scalability
from 8 nodes to 16 nodes is due to the influence of the weak
node.

E. Computation Optimization

As is discussed before, in_queue_summary, the bitmap of
in_queue can speed up the computation phase in bottom-up
procedure. Its granularity can further influence the cache
locality and then the performance of computation. Fig. 16
illustrates the performance of hybrid BFS algorithm when
different granularities are chosen for the bitmap based on
“Par allgather” implementation.

As is shown in the Fig. 16, granularity of 256 can
achieve the highest performance, which is 10.2% higher
than that of 64. However, as the granularity continues to
increase, the benefit starts to decrease, and the performance
is even lower than that of 64. This is due to the decreasing
proportion of 0 in the bitmap.

V. RELATED WORK
BFS: Since BFS on large, distributed graphs has been

gaining ever-increasing importance, a large body of work has
been contributed to optimize BFS. Agarwal et al. [7]
observed that atomic updates could not scale efficiently
across multiple sockets. To mitigate it, they proposed a
socket-aware channel communication mechanism, they
partitioned graph among sockets and adopted batching
updates, which achieved good scaling across multiple
Nehalem EX sockets. Our work adopts a one-process-per-
socket mapping, which could achieved nearly the same result
as socket-channel, however our approach is much easier to
implement cause we do not need to modify any code.
Beamer et al. [9] proposed a hybrid top-down along with
bottom-up algorithm to accelerate BFS in a quad-socket
node, which could significantly reduce the number of edges
examined, and it was the basis of our work. Hong et al. [19]
proposed a similar hybrid Read and Queue method to
remove atomic instructions and make the memory access
pattern more sequential, they further extended BFS for GPU
to gain better performance. However all of the above work
just optimized BFS performance inner-node, and did not
consider the network communication overhead, which would
increase up to 54% of the whole execution time of BFS with
only 8 nodes (please refer to section IV for more detail), thus
our work is mainly focus on mitigating the communication
overhead. Aydin et al. [11] proposed a two-dimensional
partitioning-based approach for BFS on distributed memory

Figure 15. Weak scalability of different implementations under
“ppn=8.bind-to-socket”. The results of 1, 2, 4, 8 and 16 nodes
correspond to the graph scale of 28, 29, 30, 31, and 32.

Figure 14. Reduction of bottom-up communication’s proportion
relative to the total execution time in hybrid BFS algorithm. The
results of 1, 2, 4, and 8 nodes correspond to the graph scale of 28, 29,
30, and 31. We do not give the result of 16 nodes, because it does not
make much sense due to the one ill-performed node.

Figure 16. Performance of different granularities for the bitmap -
in_queue_summary. Graph scale of 32 is tested on 16 nodes.

446

systems. When coupled with intra-node multithreading, they
could reduce the communication overhead by a factor of 3.5.
Although our work also focus on reducing communication
overhead, there exist many differences: (1) their work was
based on the traditional bottom-up algorithm, while this
paper adopts the hybrid BFS algorithm [9]; (2) their work
did not consider the impact of NUMA architecture,
especially on communication overhead; (3) their work
proposed a new BFS algorithm, our work mainly focuses on
how to effectively implement inter-node communication, and
reduce or even remove the extra intra-node communication
among multiple sockets. Actually, they are orthogonal – our
implementation could be applied to 2-D partition algorithm
to further reduce its communication overhead. Xia and
Prasanna [47] proposed a topologically adaptive parallel BFS,
which dynamically adjust the number of active threads based
on the estimated scalability to reduce the synchronization
overhead in one multicore node. There has been also much
research conducted on implementing efficient BFS on
specific architectures, such as GPU [8, 18, 19, 24, 33, 34],
Cray system [8, 34], Cell/BE processor [38], BlueGene/L
system [48].

Collective Communication: Thakur and Gropp [41]
used multiple algorithms depending on the message size to
improve the performance of collective operations in MPICH,
take allgather operation for example, they suggested to use
recursive-doubling algorithm for short and medium size
messages (<512KB) and the ring algorithm for long
messages (>=512KB). Ma et al. [26] proposed new MPI
collective communication algorithms that took NUMA into
account to avoid memory contention, and they further
adopted topology and NUMA-aware KNEM collectives with
pipelined strategies. Ma et al. [27] also took NUMA
architecture into account, and proposed a distance-aware
process placement mechanism which would construct
optimal runtime topologies to optimize intra-node collective
algorithms. HierKNEM [25] is a kernel-assisted topology-
aware collective framework, which could make intra- and
inter- node communication overlap. It adopts leaders to
participate in the inter-node collective topology and
offloading memory copies to non-leader processes for intra-
node communication. However, if the intra-node
communication cost is even higher than that of inter-node
(please refer to Fig. 6), overlapping will not help. Leader
based hierarchical algorithms [16, 31, 42] chose a single
leader process on each node, only the leaders were involved
in the inter-node communications, and the intra-node
communications were between the leader and other non-
leader processes. However it might face high shared memory
contention as the number of cores per node increased. To
mitigate the memory contention for single-leader designs,
Kandalla et al. [21] proposed a scalable multi-leader based
hierarchical Allgather design for NUMA machines, they
suggested one process per socket as the leader for shared
memory approach would achieve the best performance.
However, their multi-leader approach would only apply for
small and medium size messages, not suitable for large
messages. Other Collective Communication optimizations,

includes: Topology-Aware [15, 22, 37], process placement
[14, 43] and non-blocking collective operations [17].

Hybrid MPI/OpenMP programming model: In [36],
Rabenseifner et al. evaluated various programming models
on hierarchically hardware, including pure MPI, pure
OpenMP, and hybrid MPI/ OpenMP. They found that hybrid
programming model was the superior solution, and they
suggested taking hardware topology into account. Tsuji and
Sato [44] evaluated performance of hybrid MPI/ OpenMP
programming model on a large scale multi-core multi-socket
NUMA cluster, they found that using MPI across sockets
and OpenMP within sockets would gain the best
performance. Jeannot and Mercier [20] proposed a novel
process placement algorithm to reduce communication cost
on NUMA nodes, which took hierarchy topology and
communication pattern into account. Wu and Taylor [46]
implemented hybrid MPI/OpenMP versions of SP and BT
benchmarks on large scale multicore supercomputers, in
which they adopted MPI between nodes and OpenMP
multithreads within a node mechanism.

VI. CONCLUSION
In this work, we demonstrate that using MPI across

sockets and OpenMP inside socket performs better for the
hybrid BFS algorithm on NUMA architecture. For a NUMA
cluster with 16 eight-socket nodes, this method results in
1.53X performance without modifying the algorithm.
However, we have noticed that the communication cost of
this method is very high due to more MPI processes, which
will make it unable to scale to more nodes.

We introduce optimizations to the algorithm to reduce its
high communication cost while maintaining its advantage on
computation. Sharing data among processes can eliminate
the need of intra-node communication; parallelizing allgather
can fully utilize the bandwidth of the two Infiniband ports to
speed up inter-node communication. We successfully reduce
the communication cost from 54% of total time on eight
nodes to 18%, which will result in better scalability. We
further change the granularity of a key bitmap, which can
speed up the check operations in the computation phase of
hybrid BFS algorithm. These together will result in 2.44X
speedup relative to the original.

Our result shows although using socket-private data
structure can reduce cross-socket memory accesses, directly
mapping and sharing certain data structure can also reduce
communication cost. To what extent data should be shared
on NUMA platform need to be considered carefully.

ACKNOWLEDGEMENT
The authors thank the anonymous reviewers for their

constructive suggestions. This research is supported by the
National Natural Science Foundation of China (NSFC) under
grant numbers 60903046, 60921002, 60925009, 61003062
and the National Basic Research Program of China (973
Program) under a grant number 2011CB302502.

447

REFERENCES
[1] Graph500 Home Page. Available: www.graph500.org
[2] MVAPICH Home Page. Available: http://mvapich.cse.ohio-state.edu
[3] Open MPI Home Page. Available: www.open-mpi.org
[4] OSU Micro-Benchmarks 3.6. Available: http://mvapich.cse.ohio-

state.edu/benchmarks
[5] "OpenMP Application Program Interface Version 3.0," ed: OpenMP

Architecture Review Board, 2008, pp. 38-46.
[6] Intel® 7500/7510/7512 Scalable Memory Buffer Datasheet: Intel,

2011.
[7] V. Agarwal, F. Petrini, D. Pasetto, and D. A. Bader, "Scalable Graph

Exploration on Multicore Processors," in SC, 2010, pp. 1-11.
[8] D. A. Bader and K. Madduri, "Designing multithreaded algorithms

for breadth-first search and st-connectivity on the Cray MTA-2," in
ICPP, 2006, pp. 523-530.

[9] S. Beamer, K. Asanovi , and D. A. Patterson, "Searching for a Parent
Instead of Fighting Over Children: A Fast Breadth-First Search
Implementation for Graph500," Technical Report No. UCB/EECS-
2011-1172011.

[10] S. Blagodurov, S. Zhuravlev, M. Dashti, and A. Fedorova, "A case
for NUMA-aware contention management on multicore systems,"
presented at the USENIX ATC, Portland, OR, 2011.

[11] A. Buluc and K. Madduri, "Parallel breadth-first search on distributed
memory systems," in SC, 2011.

[12] L. Chai, A. Hartono, and D. K. Panda, "Designing high performance
and scalable MPI intra-node communication support for clusters," in
Cluster, 2006, pp. 1-10.

[13] D. Chakrabarti, Y. Zhan, and C. Faloutsos, "R-MAT: A recursive
model for graph mining," in SIAM International Conference on Data
Mining, 2004, p. 541.

[14] H. Chen, W. Chen, J. Huang, B. Robert, and H. Kuhn, "MPIPP: an
automatic profile-guided parallel process placement toolset for SMP
clusters and multiclusters," in SC, 2006, pp. 353-360.

[15] C. Coti, T. Herault, and F. Cappello, "MPI applications on grids: A
topology aware approach," in Euro-Par, 2009, pp. 466-477.

[16] R. Graham and G. Shipman, "MPI support for multi-core
architectures: Optimized shared memory collectives," Lecture Notes
in Computer Science, vol. 5205, pp. 130-140, 2008.

[17] T. Hoefler, A. Lumsdaine, and W. Rehm, "Implementation and
performance analysis of non-blocking collective operations for MPI,"
in SC, 2007, pp. 1-10.

[18] S. Hong, S. K. Kim, T. Oguntebi, and K. Olukotun, "Accelerating
CUDA graph algorithms at maximum warp," in PPoPP, 2011, pp.
267-276.

[19] S. Hong, T. Oguntebi, and K. Olukotun, "Efficient parallel graph
exploration on multi-core CPU and GPU," in PACT, 2011, pp. 78-88.

[20] E. Jeannot and G. Mercier, "Near-optimal placement of MPI
processes on hierarchical NUMA architectures," in Euro-Par 2009
Parallel Processing, 2010, pp. 199-210.

[21] K. Kandalla, H. Subramoni, G. Santhanaraman, M. Koop, and D. K.
Panda, "Designing multi-leader-based allgather algorithms for multi-
core clusters," in IPDPS, 2009, pp. 1-8.

[22] K. Kandalla, H. Subramoni, A. Vishnu, and D. K. Panda, "Designing
topology-aware collective communication algorithms for large scale
InfiniBand clusters: Case studies with Scatter and Gather," in
IPDPSW, 2010, pp. 1-8.

[23] C. Lei, G. Qi, and D. K. Panda, "Understanding the Impact of Multi-
Core Architecture in Cluster Computing: A Case Study with Intel
Dual-Core System," in CCGrid, 2007, pp. 471-478.

[24] L. Luo, M. Wong, and W. Hwu, "An effective GPU implementation
of breadth-first search," in DAC, 2010, pp. 52-55.

[25] T. Ma, G. Bosilca, A. Bouteiller, and J. J. Dongarra, "HierKNEM: An
Adaptive Framework for Kernel-Assisted and Topology-Aware
Collective Communications on Many-core Clusters," in IPDPS, 2012.

[26] T. Ma, G. Bosilca, A. Bouteiller, B. Goglin, J. M. Squyres, and J. J.
Dongarra, "Kernel Assisted Collective Intra-node MPI
Communication Among Multi-core and Many-core CPUs," in ICPP,
2011, pp. 532-541.

[27] T. Ma, T. Herault, G. Bosilca, and J. J. Dongarra, "Process Distance-
aware Adaptive MPI Collective Communications," in Cluster, 2011,
pp. 196-204.

[28] Z. Majo and T. R. Gross, "Memory management in NUMA multicore
systems: Trapped between cache contention and interconnect
overhead," in ISMM, 2011.

[29] Z. Majo and T. R. Gross, "Memory system performance in a NUMA
multicore multiprocessor," in SYSTOR, 2011.

[30] Z. Majo and T. R. Gross, "Matching Memory Access Patterns and
Data Placement for NUMA Systems," in CGO, 2012, p. 25.

[31] A. Mamidala, A. Vishnu, and D. Panda, "Efficient Shared Memory
and RDMA Based Design for MPI_Allgather over InfiniBand,"
Lecture Notes in Computer Science, vol. 4192, pp. 66-75, 2006.

[32] C. McCurdy and J. Vetter, "Memphis: Finding and fixing NUMA-
related performance problems on multi-core platforms," in ISPASS,
2010, pp. 87-96.

[33] D. Merrill, M. Garland, and A. Grimshaw, "Scalable GPU graph
traversal," in PPoPP, 2012, pp. 117-128.

[34] D. Mizell and K. Maschhoff, "Early experiences with large-scale
Cray XMT systems," in IPDPS, 2009, pp. 1-9.

[35] D. Molka, D. Hackenberg, R. Schone, and M. S. Muller, "Memory
performance and cache coherency effects on an intel nehalem
multiprocessor system," in PACT, 2009, pp. 261-270.

[36] R. Rabenseifner, G. Hager, and G. Jost, "Hybrid MPI/OpenMP
Parallel Programming on Clusters of Multi-Core SMP Nodes," in
PDNP, 2009, pp. 427-436.

[37] P. Sack and W. Gropp, "Faster topology-aware collective algorithms
through non-minimal communication," in PPoPP, 2012, pp. 45-54.

[38] D. P. Scarpazza, O. Villa, and F. Petrini, "Efficient breadth-first
search on the cell/be processor," Parallel and Distributed Systems,
IEEE Transactions on, vol. 19, pp. 1381-1395, 2008.

[39] R. Singhal, "Inside Intel next generation Nehalem microarchitecture,"
in Hot Chips, 2008.

[40] T. Suzumura, K. Ueno, H. Sato, K. Fujisawa, and S. Matsuoka,
"Performance characteristics of Graph500 on large-scale distributed
environment," in IISWC, 2011, pp. 149-158.

[41] R. Thakur and W. Gropp, "Improving the performance of collective
operations in MPICH," Lecture Notes in Computer Science, vol.
2840, pp. 257-267, 2003.

[42] J. Träff, "Efficient allgather for regular SMP-clusters," Lecture Notes
in Computer Science, vol. 4192, pp. 58-65, 2006.

[43] J. L. Traff, "Implementing the MPI process topology mechanism," in
SC, 2002, pp. 28-28.

[44] M. Tsuji and M. Sato, "Performance Evaluation of OpenMP and MPI
Hybrid Programs on a Large Scale Multi-core Multi-socket Cluster,
T2K Open Supercomputer," in ICPPW, 2009, pp. 206-213.

[45] R. F. Van der Wijngaart and H. Jin, "Nas parallel benchmarks, multi-
zone versions," NASA Ames Research Center, Tech. Rep. NAS-03-
010, 2003.

[46] X. Wu and V. Taylor, "Performance characteristics of hybrid
MPI/OpenMP implementations of NAS parallel benchmarks SP and
BT on large-scale multicore supercomputers," ACM SIGMETRICS
Performance Evaluation Review, vol. 38, pp. 56-62, 2011.

[47] Y. Xia and V. Prasanna, "Topologically Adaptive Parallel Breadth-
First Search on Multicore Processors," in PDCS, 2009.

[48] A. Yoo, E. Chow, K. Henderson, W. McLendon, B. Hendrickson, and
U. Catalyurek, "A scalable distributed parallel breadth-first search
algorithm on BlueGene/L," in SC, 2005, pp. 25-25.

448

