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Abstract— Graph is widely used in many areas. Breadth-First 
Search (BFS), a key subroutine for many graph analysis 
algorithms, has become the primary benchmark for Graph500 
ranking. Due to the high communication cost of BFS, multi-
socket nodes with large memory capacity (NUMA) are 
supposed to reduce network pressure. However, the longer 
latency to remote memory may cause problem if not treated 
well. In this work, we first demonstrate that simply spawning 
and binding one MPI process for each socket can achieve the 
best performance for MPI/OpenMP hybrid programmed BFS 
algorithm, resulting in 1.53X of performance on 16 nodes. 
Nevertheless, we notice that one MPI process per socket may 
exacerbate the communication cost. We propose to share some 
communication data structure among the processes inside the 
same node, to eliminate most of the intra-node communication. 
To fully utilize the network bandwidth, we make all the 
processes in a node to perform communication simultaneously. 
We further adjust the granularity of a key bitmap for better 
cache locality to speed up the computation. With all the 
optimizations for NUMA, communication and computation 
together, 2.44X of performance is achieved on 16 nodes, which 
is 39.2 Billion Traversed Edges per Second for an R-MAT 
graph of scale 32 (4 billion vertices and 64 billion edges). 

Keywords-Graph; BFS; NUMA; MPI/OpenMP; Allgather 

I.  INTRODUCTION 
Exploration of large-scale graphs is commonly used in 

many areas, such as bioinformatics, astrophysics, data 
mining, social network analysis, and so on. Breadth-First 
Search (BFS) is a key building block for many graph 
analysis algorithms, such as finding spanning tree, shortest 
path, connected component and max flow. The recently 
announced Graph500 ranking [1] as opposite to Top500, is 
aimed to rank computers according to their capability of 
processing data-intensive tasks. BFS has been chosen as the 
primary benchmark for Graph500. 

Due to the integration of memory controller into 
microprocessor chip for reducing memory access latency as 
well as the high-speed interconnects such as HT and QPI 
connecting multiple processors, non-uniform memory access 
(NUMA) architecture has been the dominated computer 
architecture in server machines, where local memory is 
directly attached to each processor instead of shared bus and 
can be accessed through cross-chip interconnects from other 
processors. For example, the newly announced processors 
such as Intel Xeon 7500 / E7-8800 series (Nehalem-EX/ 
Westmere-EX) begin to support up to eight sockets in a 
single node without the help of third-party node controller. 

The BFS of large-scale graph has unique features 
compared with previous high performance computing 
applications. It suffers little locality in all hierarchies – cache, 
local memory and global distributed memory. The partition 
of a graph is still a very difficult problem. So far no partition 
methods can radically cut down the communication cost, 
which is a dominated issue for BFS. A promising way is to 
use fewer nodes to lighten the communication traffics, with 
each node of higher memory capacity and capable of 
processing larger part of graph. NUMA node with 4 or more 
CPUs can satisfy such need for memory and processing 
capacity. 

Though NUMA can provide a much powerful node with 
more than one processor - more cores and memory, it can be 
a significant problem for applications due to the congestion 
on cross-chip interconnects, long latency and potential 
bandwidth saturation of remote memory accesses [10, 28-30, 
32]. For example, it is shown in [32] that the performance of 
a multi-threaded program when running on 4 cores (1 socket) 
and 8 cores (2 sockets) are almost the same. More cores do 
not result in better performance due to the NUMA effect. 

A number of studies have been done for BFS on cluster 
system [11, 40, 48], but few of them have taken the effect of 
NUMA architecture of cluster nodes into account. Other 
studies [7, 9, 19, 47] try to maximize the parallelism of BFS 
on multi-core platform, which can be adopted as the intra-
node scheme in cluster system. An approach has been 
proposed in [7] to avoid random memory accesses and 
atomic memory updates across sockets by modifying the 
algorithm, but its performance on cluster system has not been 
evaluated.  

On the other hand, parallel BFS algorithms for cluster are 
always implemented as MPI/OpenMP hybrid programmed 
programs [40] to utilize the hierarchical hardware. How to 
map such hybrid programmed applications to NUMA cluster 
node has been studied in [36, 44], but BFS has not yet been 
studied in this scope. In [36], the authors analyzed different 
mapping methods but didn’t give an universal optimal 
method, for it is related to both the machine topology and 
application behavior. In [44], using MPI across sockets and 
OpenMP within sockets is recommended through evaluation 
of two NPB-MZ benchmarks [45] and a real application. 

In this paper, we investigate how to achieve better 
performance for BFS on a multi-socket NUMA cluster. We 
choose a BFS algorithm, which we believe to be highly 
efficient, and optimize the algorithm through analyzing both 
computation and communication characteristic on NUMA 
architecture. We first demonstrate that the performance of 
BFS on an 8-socket NUMA node can be improved by up to 
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74.4% by spawning one process per socket instead of one 
process per node to exploit computing power. Nevertheless, 
simply spawning one process per socket exacerbates the cost 
of collective communication, especially when the number of 
sockets in a node is large. To solve this problem, we take 
advantage of the read-only nature of some data structure to 
share them among the multiple processes inside a node, and 
employ a scheme to perform collective communication in 
parallel to fully utilize the network bandwidth. Furthermore, 
we find that choosing an appropriate granularity for a 
frequently accessed bitmap structure according to its sparsity 
can improve the algorithm’s performance. By utilizing a 
relative small system – 16 NUMA nodes (1,024 cores), we 
achieve 39.2 billion traversed edges per second (TEPS) for 
an R-MAT graph with 4 billion vertices and 64 billion edges, 
which ranked No. 16 in the Graph500 list of June 2012. Our 
main contributions are: 
• We demonstrate that simply spawning one process per 

socket to reduce cross-socket memory accesses can 
improve performance for BFS by about 74.4% for single 
node and 52.5% for 16 NUMA nodes, compared to one 
process per node with uniformly data distribution. 

• We propose two approaches to optimize collective 
communication for NUMA cluster, sharing 
communication buffer and parallelizing allgather, which 
can boost the performance by 69.0% more for 16 nodes.  

• By selecting an appropriate granularity for a key bitmap, 
we can further improve the performance by 22.6% to 
39.2 billion traversed edges per second for 16 nodes. 

• Using these methods overall 2.44X performance is 
achieved. We believe these approaches can be migrated 
to other applications with similar characteristic. 

The following of paper is organized as below: Section II 
introduces the problems of BFS and NUMA optimization; 
our optimizations for both communication and computation 
are presented in Section III; Section IV performs detailed 
evaluation; some related works are reviewed in Section V. 
Section VI gives a conclusion. 

II. BACKGROUND AND MOTIVATION 

A. BFS Algorithms 
A graph G(V,E) is composed of a set of vertexes V and a 

set of edges E. Given a particular source vertex r V, BFS 
explores the graph G level by level to discover all the 
vertices that can be reached from vertex r, and generates a 
BFS tree rooted at vertex r. The set of vertices reached in a 
level is called frontier.  

In each level, the current frontier is explored to find all 
adjacent and unreached vertices, which form the next frontier. 
The exploration of frontier can be performed in two ways: 1) 
the top-down approach – for each vertex in the current 
frontier, its adjacent vertices are checked and unvisited ones 
are put into the next frontier; 2) the bottom-up approach – for 
each unvisited vertex in the graph, it is put into the next 
frontier only if at least one of its adjacent vertices is in the 
current frontier. 

The two approaches have their respective advantages, 
which has been well examined in [9]: the top-down approach 

performs well when the frontier is small, while the bottom-
up approach is more efficient when the frontier is large. 

Utilizing the complementation of the two approaches, a 
hybrid approach is proposed in [9], which uses top-down 
approach to explore the frontier when it is small, and uses 
bottom-up approach when the frontier is large. This is 
considered to be the most efficient algorithm of BFS on 
multicore platform. Our experiment result on a 64-core 
platform shows that the hybrid approach (8 MPI processes, 
each of 8 OMP threads) is 27.3 times faster than the top-
down approach (pure MPI, 64 MPI processes) and 4.7 times 
faster than the bottom-up approach (8 MPI processes, each 
of 8 OMP threads) using the evaluation method of Graph500.  

The Graph500 reference codes [1] contain several 
parallel implementations of BFS for distributed-memory 
clusters, which has been evaluated in [40]. The mpi_simple 
version is an implementation of the top-down approach, 
while the mpi_replicated version is an implementation of the 
bottom-up approach. To perform BFS in parallel on a 
distributed-memory cluster, the entire graph is partitioned 
into np parts, where np is the number of MPI processes; each 
MPI process searches one part and communicates with other 
processes when needed. 

Based on the Graph500 reference codes [1], we 
implement the hybrid BFS algorithm [9] for distributed-
memory clusters, by adding a data conversation procedure 
and a switching function, and using hybrid MPI/OpenMP 
programming. 

The graph is generated using R-MAT algorithm [13], the 
distribution of which is scale-free. So the frontier of each 
level first ramps up and then down exponentially [9], which 
results in a three-phase BFS procedure: first top-down, then 
bottom-up, and finally top-down. Fig. 1 illustrates the 
procedure of our parallel implementation of the hybrid BFS 
algorithm. 

 
Figure 1.  Overview of a parallel implementation of hybrid BFS 
algorithm. in_queue is the current frontier, out_queue is the next 
frontier, and both are bitmaps for all vertices. Each MPI process owns 
an copy of in_queue, but only part of out_queue, so all processes need 
to perform allgather to construct the next frontier. The *_summary are 
the bitmaps for in_queue and out_queue respectively. 
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B. Characteristics of hybrid BFS algorithm 

Fig. 1 gives an overview of hybrid algorithms: most of 
vertices are reached in the bottom-up procedure [9], which 
consumes most of the time, as illustrated in Fig. 11. So this 
work only focuses on the bottom-up procedure, the 
characteristics of which are listed as follow: (for detail 
information about hybrid algorithm and implementation of 
bottom-up procedure, please refer to [9] and [40] 
respectively.) 

1) Separated Computation and Communication Phases 
It can be clearly seen from Fig. 1 that computation and 

communication phases in bottom-up procedure are separated. 
In the computation phase, the access to the vertices and 
edges are randomly across large data set and little data is 
reused, resulting in low locality of both spatial and temporal. 

The communication phase is quite simple - two allgather 
operations are performed. The first allgather for in_queue 
consumes most of the time, for the size of in_queue is 64 
times of in_queue_summary. 

2) in_queue_summary can speed up the check operation 
of in_queue 

in_queue is the bitmap for all vertices (local and remote). 
The corresponding bit of a vertex in in_queue is 1 means this 
vertex is visited in last level. For each vertex traversed in the 
computation phase, its corresponding bit in in_queue is 
checked [40].  

in_queue_summary, which is the bitmap for in_queue, is 
used to speed up the check operations. Generally, one bit in 
in_queue_summary represents 64 bits of in_queue as in the 
Graph500 reference codes, which means only when the 
contiguous 64 bits of in_queue are all 0, the corresponding 
bit of in_queue_summary will be 0.  

In general, in_queue_summary has much better cache 
locality than in_queue due to its much smaller size, so if we 
check both of them simultaneously, the result of 
in_queue_summary will return faster – if it is 0, there is no 
need to wait for the result of in_queue, which will definitely 
be 0. The check operations are speeded up in this way. If the 
scale of graph is 32 (232 vertices), the size of in_queue and 
in_queue_summary are 512 MB and 8 MB respectively. 

3) in_queue & in_queue_summary are Read-only and 
Identical among all processes in Computation Phase 

 
In the parallel implementation, each MPI process has its 

own copy of in_queue and in_queue_summary. These two 
data structures are frequently checked (read-only) in the 
computation phase and updated by the allgather operations 
in the communication phase. More clearly, all processes will 
have the same data after allgather operations, and will not 
change them until next allgather. 

C. NUMA Architecture and its influence on BFS 
NUMA architecture is becoming the dominating node 

architecture in today’s commodity cluster. Each CPU has its 
own attached memory and can access other CPUs’ memory 
through high-speed interconnects, such as QPI and HT. The 
memory accesses of such system are non-uniform – local 
memory accesses are of much lower latency and higher 
bandwidth. With the new high-end CPUs such as Nehalem-
EX/Westmere-EX, systems with up to eight sockets can be 
achieved. Fig. 2 is an example of eight-socket node. 

NUMA has provided much larger capacity of shared 
memory or even shared cache, but remote memory accesses 
suffer much longer latency and lower bandwidth than local 
memory accesses, which, if not properly handled, may lead 
to serious performance reduction [10, 28-30, 32].  

For BFS, large portion of memory accesses are to the 
graph, which may go into the remote memory and seriously 
degrade the performance. For example, if we use multi-
thread on the platform shown in Fig. 2 and spread the graph 
across the eight sockets, each thread may randomly access 
the entire graph, which means about 7/8 of the accesses will 
go into remote memory through QPI. Fig. 3 shows that when 
all accesses are uniform to local memory, 8 cores can 
improve the performance by 6.98 times compared to 1 core; 
however, when NUMA effect is present, 64 cores can only 
improve the performance by 2.77 times compared to 8 cores. 

D. A Method To Better Use NUMA – Pros and Cons 
For MPI/OpenMP hybrid programmed application, the 

authors in [44] has recommended to use MPI across sockets 
and OpenMP within the socket. The method can be achieved 
by spawning one MPI process per socket, and binding them 
to each socket. The binding to socket operation is supported 
by both Open MPI [3] and MVAPICH2 [2] by using “-bind-
to-socket -bysocket” and “-genv MV2_ENABLE_AFFINITY 
1” flags respectively, or shell script in [44]. 

 
Figure 3. Speedup of BFS algorithm when running on 1 core, 8 
cores and 64 cores. One thread per core is used in all three cases. 

 
Figure 2. Topology of an eight-socket node. Eight Intel Xeon X7550 
CPUs are connected through QPI. 
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1) Pros: eliminate cross-socket accesses in computation 

phase and fully utilize inter-node network bandwidth in 
communication phase 

This scheme results in better locality since all threads 
only access their local memory and remote accesses only 
happen during the MPI communication. 

On the other hand, multiple MPI processes performing 
inter-node communication can take advantage of the bi-
directional link bandwidth, especially when multiple network 
ports exist. Fig. 4 shows the achieved bandwidth between 
two nodes using OSU micro-benchmark [4] when different 
number of MPI processes perform inter-node communication. 
It shows that when eight processes per node are 
simultaneously participating in communication, the highest 
bandwidth is achieved, while one process per node can only 
utilize about half. 

2) Cons: multiple processes per node will exacerbate 
the cost of communication 

The cost of communication will increase due to increased 
number of processes – multiple processes per node will 
introduce extra intra-node communication. Though intra-
node communication through shared memory is faster than 
inter-node, the communication time spent within nodes may 
take an unexpectedly high percentage [23]. Some work have 
been done to optimize intra-node communication, such as 
improving cache efficiency [12, 21], topology-aware process 
affinity [27] and overlapping with inter-node communication 
[26, 31]. 

In the following, we take allgather for example to 
estimate its impact on collective communication. Given the 
total data size is m bytes, and the number of MPI processes is 
np, then each process owns m/np bytes of data. The total 
amount of data transmitted during allgather is  

      (m/np)*(np-1)*np = m*(np-1)  (1) 

where (np-1) means each process need to receive data from 
the other (np-1) processes; np means all the np processes 
need to receive the same amount of data.  

If the total data size does not change, the total amount of 
data transmitted is about proportional to the number of 
spawned processes. If one MPI process is spawned per 

socket instead of per node for system in Fig. 2, the amount of 
data transmitted will increase by 8 times.  

3) Apply to BFS 
The hybrid BFS algorithm presented in Fig. 1 can fit this 

method well for two reasons: 1) the graph is intrinsically 
partitioned to all processes, so each MPI process will only 
access its local graph inside the socket; 2) the data 
transmitted through MPI across sockets, which are bitmaps 
for vertices, are much smaller than the graph.  

The computation phase of hybrid BFS algorithm will 
benefit from the restriction of accesses of graph to the local 
memory. If we apply the method to the example in Fig. 3, 
speedup of 6.31X can be achieved instead of 2.77X on 64 
cores relative to 8 cores. Our evaluation in Section IV has 
demonstrated that spawning one MPI process per socket and 
binding it to socket can improve performance of hybrid 
algorithm for 74.4% on single node, compared to the best 
result of one MPI process per node. 

On the other hand, the hybrid BFS algorithm will also 
suffer from the increasing communication overhead of the 
two allgather shown in Fig. 1. Our evaluation in Section V 
has shown that when 8 nodes are in use, spawning one 
process per socket results in 2.34 times of execution time in 
each bottom-up communication phase, compared to one 
process per node. This leads to that 54% of total time is spent 
on bottom-up communication.  

Our goal is to refine the method to maintain its benefits 
for computation phase and minimize the cost of the allgather 
in Fig. 1, by taking advantage of certain characteristic of the 
hybrid BFS algorithm. 

III. OPTIMIZATIONS 
In this section, we explain several optimizations we have 

done for both communication and computation: the first 
optimization will achieve our goal proposed in Section II by 
sharing some data structure among processes inside a node; 
the second optimization can further improve the performance 
of communication by fully utilizing the network bandwidth; 
the third optimization choose an appropriate granularity for 
the bitmap in_queue_summary to maximize the speedup of 
computation. 

A. Sharing Communication Data among Processes 
Prior work has done some optimization for allgather 

when there are multiple processes in one node. For example, 
leader-based approach [31] selects one process per node as a 
leader and the other processes inside the same node are 
children, the allgather is divided into 3 steps: 1) aggregate 
data to leader process; 2) perform allgather between leaders; 
3) distribute data to child processes. Fig. 5a illustrate the 
mechanism of this approach, which can eliminate extra 
memory copies between different channel buffers and allow 
overlap of intra- and inter- node communication [31]. We 
implement this approach by using gather from children to 
leader for step 1, allgather between leaders for step 2, and 
broadcast from leader to children for step 3. Fig. 6 shows the 
time spent on each step, which is normalized to the default 
implementation of allgather in Open MPI 1.5.5.  

 
Figure  4. Communication bandwidth between two nodes (dual 
Infiniband ports each). More processes per node communicating 
simultanuously results in higher bandwidth.  ppn is short for 
“number of processes per node”.  
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Fig. 6 shows that the intra-node communication actually 

takes a much larger portion of time than inter-node 
communication in this case. This means that even the best 
way to overlap intra- and inter- node communication cannot 
hide the extra intra-node communication cost introduced by 
spawning one process per socket.  

Fig. 5b illustrates how we share some data structures 
among processes inside the same node to eliminate intra-
node communication of conventional leader-based allgather. 
The sharing among processes is implemented through mmap. 

1) shared in_queue to eliminate step 3 
As discussed in Section II, the in_queue is actually read-

only and is the same among all processes. This motivates us 
to share one in_queue between leader and its children, so that 
time consumed by broadcast (step 3 of Fig. 5a) is completely 
eliminated. Although the shared in_queue will bring certain 
memory accesses across sockets, it won’t cause severe 
problem for several reasons:  

a) smaller data size: the key point that we can tolerant 
cross-socket accesses for in_queue but not for the graph is 

that the data size of in_queue is very small compared to the 
graph itself, usually less than one thousandth. 

b) larger cache size: sharing one in_queue among 
multiple sockets will equivalently enlarge the usable cache 
capacity for in_queue, which may achieve better cache 
locality.  

c) higher access frequency: in_queue is now more 
frequently accessed by all the cores of multiple sockets, 
which may result in higher possibility to be cached.  

d) faster remote cache access: if in_queue is present in 
the remote cache, it can be accessed even faster than from 
local memory. The latency of remote cache is considered to 
be lower than local memory [35]. Even if the data is in local 
memory, the CPU still needs to snoop remote cache to 
check if the required data is present there for Intel Nehalem 
architecture [39].  

2) shared out_queue to eliminate step 1 
Further on, we can make all processes inside the same 

node share out_queue too; then the leaders can directly 
access the other processes’ out_queue and perform allgather, 
so that the time spent on step 1 in Fig. 5a is eliminated. The 
sharing scheme is a little different with that of in_queue. The 
out_queue of each process is different with each other, so 
there are multiple out_queue in the shared space among 
processes. Each process is in charge of the update of one 
out_queue, but can read the other out_queue. So the leaders 
can directly perform allgather without aggregation of data. 

The in_queue_summary and out_queue_summary can be 
dealt in the same way. 

B. Parallelizing Allgather 
In Fig. 5b, only one process per node participates in the 

inter-node allgather operation, the inter-node network 
bandwidth cannot be fully used as shown in Fig. 4. This 
motivates us to let multiple processes perform allgather 
simultaneously to decrease inter-node communication time. 

 
Figure 6. Excuation time of default implementation in Open MPI 
1.5.5 and leader-based implementation for allgather. 16 eight-
socket nodes and totally 128 processes are used to allgather 64/512 
MB data, which is exactly the size of in_queue at scale 29/32. 

             
(a) Prior work          (b) Our optimization 

Figure 5. Prior work and our optimization for allgather. (a) Prior work: leader-based allgather. Initial state, one process owns one part of the data;  
STEP 1, aggregate data to leader process; STEP 2, perform allgather between leaders; STEP 3, distribute data to child processes. (b) Our optimization: 
share data among processes inside the same node. Initial state, one process conrresponds to only one part of the data in the shared space; STEP 1, the 
leaders perform allgather for the data in the shared space; after step 1, all processes can see and directly use the result from the shared space. 

442



 
Fig. 7 illustrates our mechanism of utilizing multiple 

processes to perform allgather in parallel: 
• All the processes are divided into several subgroups, 

labeled with different colors. Each process in a node 
belongs to exactly one subgroup.  

• Each subgroup performs allgather for the data in the 
subgroup, also labeled with different colors.  

• All the subgroups perform allgather in parallel, each 
resulting in only part of the final data.  

• The intermediate results of all subgroups joint into the 
final result. The joint phase does not need any operation 
actually – the results of each subgroup are mapped to a 
contiguous virtual space during their allocation, so the 
final result is already there after allgather. 

Though multiple processes participate in allgather, the 
amount of data transmitted does not change, and the network 
bandwidth will be better utilized. Suppose that the total data 
size is still m bytes, the number of MPI processes per node is 
8, and the number of all processes is np, then according to 
(1), the total amount of data transmitted can be calculated as 

      8 * (m/8)*(np/8-1) = m*(np/8-1)     (2) 

where 8 is the number of subgroups performing allgather, 
(m/8) is the data size of each subgroup, (np/8) is the number 
of processes in each subgroup. It indicates that, the amount 
of data transmitted is exactly the same with that of one 
process per node responsible for allgather all data. 

The parallelizing allgather scheme is similar with multi-
leader-based allgather algorithm [21], the key difference is 
that the multi-leader-based allgather scheme is aimed to 
optimize intra-node communication by reducing cache 
contention [21], and each leader still need to obtain all the 
data, which result in more data transmission than our 
parallelizing allgather. 

C. Granularity of Bitmap 
As discussed in Section II, the bitmap for in_queue – 

in_queue_summary can speed up the check operations when 

the corresponding bit is 0, due to its better cache locality and 
lower access latency. 

However, as the scale of graph gets larger, the size of the 
bitmap gets larger too, resulting in lower cache locality.  

The conventional granularity for the bitmap is 64 – the 
size of “unsigned long”. If we increase the granularity – let 
one bit in the bitmap represents more bits in the in_queue as 
shown in Fig. 8, there will be advantages and disadvantages. 

1) advantages: smaller size, better cache locality 
As the granularity increasing, the size of bitmap gets 

smaller, thus, the bitmap will have better cache locality and 
higher possibility to be cached in faster high-level caches.  

2) disadvantages: less zeros, less speedup 
On the other hand, the proportion of zeros will decrease, 

since as long as there is one bit 1 in the in_queue, the 
corresponding bit in the bitmap will be 1, no matter what the 
other bits in the in_queue are. For example, if in_queue is 
00010010b, for granularity of 2, the bitmap will be 0101b 
with 50% zeros; for granularity of 4, the bitmap will be 11b 
with no zero. As discussed before, the bitmap is only useful 
when it is 0, so less zeros means less opportunity of speedup. 
It is worth to mention that, the bitmap is only used in 
bottom-up procedure, during which most of the vertices are 
visited and there are lots of 1s in in_queue, so the granularity 
cannot be very large.  

The bitmap can tolerate the increase of granularity to 
some extent, since as the scale of graph gets larger, there will 
be more contiguous zeros in the bitmap. 

So there may be a trade-off point for the granularity of 
bitmap: the proportion of zeros does not drop too much 
while reducing its size for better cache locality. 

IV. EVALUATIONS 

A. Experimental Setup 
We evaluated the hybrid BFS algorithm on a “thousand-

core” platform, which consists of 16 eight-socket NUMA 
nodes. The detail configuration of each node is illustrated in 
Table I, and Fig. 2 gives the topology of the eight CPUs. The 
SMT is disabled, so there are exactly 1024 cores; the DVFS 
is also disabled. The two Infiniband ports of each node are 
connected to one 36-port switch. It is worth to mention that 
there is one weak node in the 16 nodes, the communication 
performance of which is weak compared to other nodes due 
to unknown reason. 

 
Figure 8. Increase the granularity of in_queue_summary, resulting 
in a much smaller bitmap. 

 
Figure 7. Parallelizing allgather – refinement of step 1 in Fig. 5b. 
Processes are divided into several subgroups, labeled with different 
colors. Each subgroup performs allgather for part of data in parallel. 
All intermediate results of each subgroup joint into the final result. 
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The hybrid BFS algorithm (Fig.1) is implemented 

according to [9], which is MPI/OpenMP hybrid programmed. 
Open MPI 1.5.5 [3] is used as implementation of MPI.  

The evaluation method of Graph500 [1] is adopted. The 
size of input graph is defined by its SCALE, which is the 
logarithm base two of the number of vertices. In each single 
test, 64 different vertices are random selected as the roots of 
64 BFS iterations. Each iteration reports its TEPS (Traversed 
Edges per Second), and the final result is calculated as the 
harmonic mean of the TEPS of 64 iterations. Besides the 
final TEPS, we perform detailed profiling for each test. 
When the profiling results are given, they are the average of 
64 BFS iterations. 

We perform most of the evaluations by spawning one 
process per socket (eight processes per node) and binding it 
to socket as discussed in Section II; otherwise indicated.  

B. Overview 
Fig. 9 gives an overview of the performance of all the 

optimizations for hybrid BFS algorithm on 16 nodes, where 
“+ xx” means the corresponding optimization explained in 
Section III is implemented on the previous version. 

We demonstrate that by simply spawning 1 process per 
node and binding it to socket, 1.53X performance can be 
achieved for “Original” implementation. With all our 
optimizations together, the speedup is up to 2.44X relative to 
“Original.ppn=1” and 1.60X relative to “Original.ppn=8”. 
When compared to “Original.ppn=8”, “Share in_queue” 
improves the performance by 34.1% for its great reduction of 
communication cost; “Share all” and “Par allgather” can 
give another 6.5% and 4.6% of speedup respectively; 
“Granularity” can further improve the performance by 
14.8%. 

C. NUMA Optimization 
We evaluate the “Original” implementation under scale 

28 on single node when spawning different number of 
processes with different mpirun and numactl flags, and 
varying the number of OpenMP threads. The OpenMP 

dynamic scheduler [5] is used to avoid load-balance problem, 
so when we run 64 threads total (equal to core number), the 
results are almost the best. Fig. 10 only illustrates the best 
results among various thread numbers on single node.  

For single node, the performance of “ppn=8.bind-to-
socket” is best as shown in Fig. 10, which is 1.74X of 
“ppn=1.interleave” and 2.08X of “ppn=8.noflag”. 
“ppn=1.interleave” has better performance than 
“ppn=1.noflag”, because the graph is equally interleaved 
across all sockets in the former, so all the memory bandwidth 
of all sockets can be utilized. The low performance of 
“ppn=8. noflag” indicates that the multiple threads of one 
process are spread across multiple sockets if binding is not 
used, which results in cross-socket memory accesses.  

Fig. 11 shows the detailed profiling results of the 
“Original” implementation to show how “ppn=8.bind-to-
socket” affects different phases of BFS. It can be clearly seen 
that “ppn=8.bind-to-socket” greatly speeds up both the 
top-down and bottom-up computation phase. The 1.58x 

 
Figure 10. Performance of “Original” implementation with various 
execution policy. Graph scale of 28 is evaluated on 1 node. “noflag” 
means just simply execution of the program without special numactl or 
mpirun flags; “interleave” means using the flag “--interleave=all” for 
numactl; “bind-to-socket” means using the flag “--bind-to-socket --
bysocket” for mpirun. “bind-to-socket” only works when more than 8 
processes are spawned, otherwise partial of the 8 CPUs will be idle. 

 
Figure 9. Overview of all optimizations. Graph scale of 32 is 
evaluated on 16 nodes. “Original” means the initial implementation. 
All versions spawn 8 procs per node and bind them to sockets, except 
“Original.ppn=1” with 1 proc per node. “Share in_queue” means 
in_queue is shared; “Share all” means in_queue, out_queue, 
in_queue_summary, and out_queue_sumamry are all shared; “Par 
allgather” means allgather for in_queue is done in parallel; 
“Granularity” means the best result of all tested granularities. 

TABLE I.  NODE CONFIGURATION 

CPUs 

Eight Intel Xeon X7550 processers 
each contains: 
    8 cores, running at 2.0GHz, SMT disabled 

32KB/32KB private L1 D/I Cache per Core 
256KB private L2 Cache per Core 
18MB shared L3 Cache per CPU 
Four 6.4GT/s fully-width QPI 
Four 6.4GT/s Intel SMI channels, expanded to eight 

DDR3 channels after Intel SMB 

Memory 

Half (four) of the eight DDR3 channels per CPU are 
populated with 8GB DDR3-1066 DRAMs 
17.1GB/s1 peak memory bandwidth per CPU 
Total 256GB memory per node 

Network 2x 40Gbps Infiniband Ports per node 

1. Intel SMB can only support DDR3 burst length of four, so only half of the 
theoretical bandwidth of one DDR3 channel can be achieved. [6]  
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speedup of bottom-up computation can be fully attributed to 
the reduction of remote memory access, because unlike [7], 
there are no atomic memory updates in bottom-up procedure. 
In “ppn=1.interleave”, one socket owns 1/8 of the graph, so 
7/8 of the memory accesses to the graph will go into the    
remote memory. However, in “ppn=8.bind-to-socket”, the 
graph is naturally partitioned into 8 parts, and the remote 
memory accesses to the graph in the computation phase is 
now replaced by the two allgather for in_queue and 
in_queue_summary in communication phase as shown in Fig. 
1. Although the intra-node allgather still needs memory 
accesses across sockets, the amount of data accesses is much 
smaller than that of graph.  

For the 16-node cluster, “ppn=8.bind-to-socket” can still 
provide 1.53X performance than “ppn=1.interleave”, as 
shown in Fig. 9. 

1) Communication Cost 
In Section II, we discuss the amount of data transmitted 

in communication phase in theory. We measure the actual 
communication time here. Fig. 12 illustrates the cost of 
communication in bottom-up procedure of the “Original” 

implementation when weak scaling from 1 node to 8 nodes.  
It can be seen from Fig. 12 that the cost of each 

communication phase grows exponentially as weak scaling; 
besides, the cost of spawning eight processes per node is 
much larger than one process per node. The cost of 
communication phase is the two allgather for in_queue and 
in_queue_summary. As weak scaling, the size of these two 
data structures grows exponentially, which makes the cost of 
each communication phase grow exponentially too. Besides, 
since “ppn=8.bind-to-socket” has 8 times of processes, its 
communication cost is much larger than “ppn=1.interleave”, 
about 2.34 times when 8 nodes are in use.  

As a result, the proportion of time spent on 
communication quickly grows from 12% for one node to 
54% for 8 nodes. The size of graph that one node needs to 
search stays the same as weak scaling, so the time spent on 
computation phase does not changes too much. Due to the 
exponentially growing communication cost as weak scaling, 
the proportion it occupies will increase too, which will 
finally dominate the execute time as continuously scaling.  

In summary, although “ppn=8.bind-to-socket” has great 
advantage on computation, its high communication cost 
makes it less scalable. 

D. Communication Optimization 
In this subsection, we evaluate the effect of the two 

optimizations we propose in Section III – “share data” and 
“parallelizing allgather” on communication cost. 

1) Absolute Time 
Fig. 13 shows the average time of each communication 

phase in bottom-up procedure as weak scaling, which is 
mainly the two allgather as shown in Fig. 1. The result of 16 
nodes does not have much meaning when compared to 8 
nodes or others, since there is one weak node whose 
Infiniband performance is weak as mentioned before.  

Fig. 13 proves that the abovementioned optimizations 
have greatly reduced the communication cost, 4.07X for 
eight nodes. “Share in_queue” has the most significant 
effect, which can cut off about half of the communication 
cost. This is because most of the communication cost is spent 
on allgather for in_queue due to its larger size, and the cost 
of step 3 in Fig. 5a can be fully eliminated. “Share all” can 
eliminate the cost of step 1 and step 3 in Fig. 5a for the 

 
Figure 13. Reduction of average time spent on each bottom-up 
communicaiton phase. The results of 1, 2, 4, 8 and 16 nodes 
correspond to the graph scale of 28, 29, 30, 31, and 32.  

 
Figure 11. Execution time breakdown and speedup of computation 
procedure for the “Original” implementation. Graph scale of 28 is 
evaluated on single node. Switch represents the time consumed on 
switching top-down to bottom-up and vice versa, which need to 
convert corresponging data structure. Stall represents the idle time due 
to load unbalance.  

 
Figure 12. Communication cost of the “Original” implementation 
when weak scaling from 1 node to 8 nodes. The bars represent the 
absolute time of each communicaiton phase in bottom-up procedure 
for “ppn=1.interleave” and “ppn=8.bind-to-socket”. The curve 
represents the proportion of all the bottom-up communicaiton time 
relative to total execution time for “ppn=8.bind-to-socket”. The scales 
of graph for 1, 2, 4, and 8 nodes are 28, 29, 30, and 31 respectively. 
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both allgather for in_queue and in_queue_summary. “Par 
allgather” can further reduce the cost of step 2 in Fig. 5a (or 
step 1 in Fig. 5b) by better utilizing the two Infiniband ports. 

2) Proportion and Weak Scalability 
If the time spent on communication can be reduced, the 

hybrid BFS algorithm will be scaled to much more nodes, 
because the time spent on computation does not change too 
much as discussed before. Fig. 14 illustrates the proportion 
of time spent on bottom-up communications relative to the 
total execution time. The proportion of time spent on top-
down procedure, stall and switch together occupy less than 
20% of total time, even in the case that the bottom-up 
communication time has been optimized to minimum. The 
optimization for these cost are out of scope for this paper. 

It can be seen from Fig. 14 that the proportion of time 
spent on bottom-up communication has been greatly 
reduced. For example, the proportion on eight nodes can be 
reduced from 54% without any optimizations to 18% with all 
the optimizations for communication implemented. This will 
lead to much better scalability.  

Fig. 15 illustrates the weak scalability from 1 node to 16 
nodes. The optimizations for communication result in better 
scalability than “Original.ppn=8”. The inferior scalability 
from 8 nodes to 16 nodes is due to the influence of the weak 
node.  

 
E. Computation Optimization 

As is discussed before, in_queue_summary, the bitmap of 
in_queue can speed up the computation phase in bottom-up 
procedure. Its granularity can further influence the cache 
locality and then the performance of computation. Fig. 16 
illustrates the performance of hybrid BFS algorithm when 
different granularities are chosen for the bitmap based on 
“Par allgather” implementation. 

As is shown in the Fig. 16, granularity of 256 can 
achieve the highest performance, which is 10.2% higher 
than that of 64. However, as the granularity continues to 
increase, the benefit starts to decrease, and the performance 
is even lower than that of 64. This is due to the decreasing 
proportion of 0 in the bitmap. 

V. RELATED WORK 
BFS: Since BFS on large, distributed graphs has been 

gaining ever-increasing importance, a large body of work has 
been contributed to optimize BFS. Agarwal et al. [7] 
observed that atomic updates could not scale efficiently 
across multiple sockets. To mitigate it, they proposed a 
socket-aware channel communication mechanism, they 
partitioned graph among sockets and adopted batching 
updates, which achieved good scaling across multiple 
Nehalem EX sockets. Our work adopts a one-process-per-
socket mapping, which could achieved nearly the same result 
as socket-channel, however our approach is much easier to 
implement cause we do not need to modify any code. 
Beamer et al. [9] proposed a hybrid top-down along with 
bottom-up algorithm to accelerate BFS in a quad-socket 
node, which could significantly reduce the number of edges 
examined, and it was the basis of our work. Hong et al. [19] 
proposed a similar hybrid Read and Queue method to 
remove atomic instructions and make the memory access 
pattern more sequential, they further extended BFS for GPU 
to gain better performance. However all of the above work 
just optimized BFS performance inner-node, and did not 
consider the network communication overhead, which would 
increase up to 54% of the whole execution time of BFS with 
only 8 nodes (please refer to section IV for more detail), thus 
our work is mainly focus on mitigating the communication 
overhead. Aydin et al. [11] proposed a two-dimensional 
partitioning-based approach for BFS on distributed memory 

 
Figure 15. Weak scalability of different implementations under 
“ppn=8.bind-to-socket”. The results of 1, 2, 4, 8 and 16 nodes 
correspond to the graph scale of 28, 29, 30, 31, and 32.  

 
Figure 14. Reduction of bottom-up communication’s proportion 
relative to the total execution time in hybrid BFS algorithm. The 
results of 1, 2, 4, and 8 nodes correspond to the graph scale of 28, 29, 
30, and 31. We do not give the result of 16 nodes, because it does not 
make much sense due to the one ill-performed node. 

 
Figure 16. Performance of different granularities for the bitmap - 
in_queue_summary. Graph scale of 32 is tested on 16 nodes. 
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systems. When coupled with intra-node multithreading, they 
could reduce the communication overhead by a factor of 3.5. 
Although our work also focus on reducing communication 
overhead, there exist many differences: (1) their work was 
based on the traditional bottom-up algorithm, while this 
paper adopts the hybrid BFS algorithm [9]; (2) their work 
did not consider the impact of NUMA architecture, 
especially on communication overhead; (3) their work 
proposed a new BFS algorithm, our work mainly focuses on 
how to effectively implement inter-node communication, and 
reduce or even remove the extra intra-node communication 
among multiple sockets. Actually, they are orthogonal – our 
implementation could be applied to 2-D partition algorithm 
to further reduce its communication overhead. Xia and 
Prasanna [47] proposed a topologically adaptive parallel BFS, 
which dynamically adjust the number of active threads based 
on the estimated scalability to reduce the synchronization 
overhead in one multicore node. There has been also much 
research conducted on implementing efficient BFS on 
specific architectures, such as GPU [8, 18, 19, 24, 33, 34], 
Cray system [8, 34], Cell/BE processor [38], BlueGene/L 
system [48]. 

Collective Communication: Thakur and Gropp [41] 
used multiple algorithms depending on the message size to 
improve the performance of collective operations in MPICH, 
take allgather operation for example, they suggested to use 
recursive-doubling algorithm for short and medium size 
messages (<512KB) and the ring algorithm for long 
messages (>=512KB). Ma et al. [26] proposed new MPI 
collective communication algorithms that took NUMA into 
account to avoid memory contention, and they further 
adopted topology and NUMA-aware KNEM collectives with 
pipelined strategies. Ma et al. [27] also took NUMA 
architecture into account, and proposed a distance-aware 
process placement mechanism which would construct 
optimal runtime topologies to optimize intra-node collective 
algorithms. HierKNEM [25] is a kernel-assisted topology-
aware collective framework, which could make intra- and 
inter- node communication overlap. It adopts leaders to 
participate in the inter-node collective topology and 
offloading memory copies to non-leader processes for intra-
node communication. However, if the intra-node 
communication cost is even higher than that of inter-node 
(please refer to Fig. 6), overlapping will not help. Leader 
based hierarchical algorithms [16, 31, 42] chose a single 
leader process on each node, only the leaders were involved 
in the inter-node communications, and the intra-node 
communications were between the leader and other non-
leader processes. However it might face high shared memory 
contention as the number of cores per node increased. To 
mitigate the memory contention for single-leader designs, 
Kandalla et al. [21] proposed a scalable multi-leader based 
hierarchical Allgather design for NUMA machines, they 
suggested one process per socket as the leader for shared 
memory approach would achieve the best performance. 
However, their multi-leader approach would only apply for 
small and medium size messages, not suitable for large 
messages. Other Collective Communication optimizations, 

includes: Topology-Aware [15, 22, 37], process placement 
[14, 43] and non-blocking collective operations [17].  

Hybrid MPI/OpenMP programming model: In [36], 
Rabenseifner et al. evaluated various programming models 
on hierarchically hardware, including pure MPI, pure 
OpenMP, and hybrid MPI/ OpenMP. They found that hybrid 
programming model was the superior solution, and they 
suggested taking hardware topology into account. Tsuji and 
Sato [44] evaluated performance of hybrid MPI/ OpenMP 
programming model on a large scale multi-core multi-socket 
NUMA cluster, they found that using MPI across sockets 
and OpenMP within sockets would gain the best 
performance. Jeannot and Mercier [20] proposed a novel 
process placement algorithm to reduce communication cost 
on NUMA nodes, which took hierarchy topology and 
communication pattern into account. Wu and Taylor [46] 
implemented hybrid MPI/OpenMP versions of SP and BT 
benchmarks on large scale multicore supercomputers, in 
which they adopted MPI between nodes and OpenMP 
multithreads within a node mechanism. 

VI. CONCLUSION 
In this work, we demonstrate that using MPI across 

sockets and OpenMP inside socket performs better for the 
hybrid BFS algorithm on NUMA architecture. For a NUMA 
cluster with 16 eight-socket nodes, this method results in 
1.53X performance without modifying the algorithm. 
However, we have noticed that the communication cost of 
this method is very high due to more MPI processes, which 
will make it unable to scale to more nodes. 

We introduce optimizations to the algorithm to reduce its 
high communication cost while maintaining its advantage on 
computation. Sharing data among processes can eliminate 
the need of intra-node communication; parallelizing allgather 
can fully utilize the bandwidth of the two Infiniband ports to 
speed up inter-node communication. We successfully reduce 
the communication cost from 54% of total time on eight 
nodes to 18%, which will result in better scalability. We 
further change the granularity of a key bitmap, which can 
speed up the check operations in the computation phase of 
hybrid BFS algorithm. These together will result in 2.44X 
speedup relative to the original. 

Our result shows although using socket-private data 
structure can reduce cross-socket memory accesses, directly 
mapping and sharing certain data structure can also reduce 
communication cost. To what extent data should be shared 
on NUMA platform need to be considered carefully. 
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