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Abstract—DRAM system has been more and more critical on 
modern multi-core/many-core architecture where the Moore’s 
law has been made effect on increasing the number of cores 
integrated in a processor chip. The performance of DRAM 
system is usually measured in term of bandwidth and latency, 
which are regarded as inherently depending on Row Buffer Hit 
Rate (RBHR) according to previous studies. In this paper, we 
find that Memory Level Parallelism (MLP) exhibits a stronger 
correlation with the performance of DRAM system on multi-
core/many-core architecture than RBHR, and promoting MLP 
significantly improves DRAM system performance. In order to 
exploit the MLP, we have evaluated various approaches 
including multi-bank, multi-row-buffers, multi-memory-
controllers and the obsolete Virtual Channel Memory (VCM). 
The experimental results show that VCM is a better alternative 
to traditional DRAM chip on multi-core/many-core 
architecture than the other three approaches because VCM 
has almost all the advantages of the others: 1) it can improve 
homogeneous workloads’ IPC by 2.21X on a 16-core system 
with 32 virtual channels due to leveraging unexploited MLP. 2) 
It can also promote Quality-of-Service (QoS) of DRAM system 
by removing unfairness while memory controllers serve 
memory requests. 3) It can save energy and has low area costs. 
Unfortunately, VCM, which was proposed in the late 1990s, 
faded away before multi-core/many-core became dominated. 
Therefore, we suggest memory chip vendors reconsider the 
VCM technology for multi-core/many-core architecture. 

Keywords-DRAM; Virtual Channel Memory; Memory Level 
Parallelism; Qos 

I. INTRODUCTION 
“MLP yes! ILP no!” Memory Level Parallelism (MLP) 

was originally proposed in term of the number of outstanding 
cache misses by Andrew Glew [8], in order to persuade 
people to do research that helps to exploit MLP. 
Subsequently, numerous previous studies investigated 
microarchitectures to enhance MLP from on-chip (processor) 
side, such as MLP-aware cache replacement [24], MLP-
aware prefetcher [7] and runahead execution [5]. In these 
studies, due to limited number of cores and limited 
parallelism resource (such as Instruction Window, MSHR) 
on chip, processor was the bottleneck to exploit MLP. But 
this is not right for multi-core/many-core architecture any 
more, with the rapid increasing number of cores, the shared 
memory system suffers heavy pressure to service requests 
form all cores. Thus for multi-core/many-core architecture, 
the memory system has become the main bottleneck to 
exploit MLP due to its relative slowly increasing parallelism 

resource (channel, rank, and bank). The “Memory Wall” 
problem under multi-core/many-core architecture becomes 
more and more serious. 

To moderate “Memory Wall” problem, contemporary 
servers would adopt high memory configuration, which 
could provide high memory bandwidth and MLP. For 
example, POWER7 processor integrates 8 cores with 4 
threads each and two 4-channel DDR3 memory controllers, 
which could provide as high as 100GBps memory bandwidth 
if all the channels are fully exploited. However, due to cost 
and power budget limitation, a large part of servers were not 
configured with full memory DIMMs/channels exploited. A 
statistical data from a server vendor company showed that, 
during 2011, the most popular server sold is configured with 
2 sockets, each socket has 6 cores with 6 memory DIMM 
slots, among these, only 15% of the servers are sold with full 
DIMMs exploited, 50% with half DIMMs exploited, and 35% 
with less than half DIMMs exploited. Thus, with the budget 
limitation, it becomes more important to improve memory 
bandwidth efficiency and exploit MLP to shorten the 
memory wall gap. 

However, from the DRAM memory system side, because 
each DRAM bank is integrated with only one 4KB or 8KB 
row-buffer (or sense-amplifier) which holds data from a 
100xMB DRAM array, the Row Buffer Hit Rate (RBHR) is 
considered as a key factor of the performance of DRAM 
system. Most researchers have made significant 
contributions on reducing RBHR by memory access 
scheduling [27], address mapping [33] and so on. During the 
past years, the prevalence of multi-core/many-core 
architecture poses new challenges of performance, power 
and QoS to DRAM system which is shared by all cores.  

Recent studies have proposed a number of solutions to 
address the challenges caused by multi-core system [6, 18, 
20, 21, 23, 25, 26, 37]. Nevertheless, most of the studies 
were motivated by improving row buffer hit rate (RBHT) of 
DRAM system, without considering the method of 
enhancing MLP for DRAM system. Although previous 
studies show the strong correlation between RBHR and the 
performance of DRAM system, we find that MLP has even a 
stronger correlation with the performance of DRAM system 
than RBHR in multi-core/many-core architecture. 
Experimental results show that the average IPC of 
homogeneous multi-program workloads on a 16-core system 
improves by 1.95X when incrementing the DRAM banks 
from 8 to 32, whereas the RBHRs are almost the same for 
the 8-bank and 32-bank DRAM configurations, while the  
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bank-level MLP increases by about 2.00X (please refer to 
section II for detail). 

On multi-core/many-core architecture, each core can 
generate an independent memory request stream. Memory 
controllers are responsible for scheduling the requests to the 
available DRAM banks. If there are no available banks, the 
requests have to queue in the request buffer of memory 
controller. A recent study has shown that the queuing-delay 
has become the dominant portion of one memory request’s 
access latency on multicore system [31]. Given the provision 
of more available banks, more memory requests would be 
scheduled, which means there is still a large amount of 
unexploited MLP due to memory limited parallel resource in 
multi-core/many-core system.  

There are several approaches to enhance MLP. As 
mentioned above, simply incrementing bank count within a 
DRAM chip is a straightforward method to enhance MLP. 
There are other methods to enhance MLP, such as using 
multiple memory controllers, splitting bank into sub-banks 
and incrementing the number of row buffers. For example, 
using multiple memory controllers is a widely used method 
to improve DRAM performance on multicore architecture, 
but the number of memory controllers is not scalable due to 
the limited chip pin count. Udipi et al. [31] proposed two 
new DRAM organizations which contain a large number of 
sub-banks (or sub-arrays) and show performance 
improvement by 54%. However, these aggressive 
approaches substantially change the DRAM organization, 
thereby cause significant re-design cost and high risks. 

In this paper, we have evaluated four representative 
straightforward approaches to leverage MLP for DRAM 
system on multi-core architecture: 1) multi-bank, 2) multi-
row-buffer 1 , 3) multi-memory-controller and 4) Virtual 
Channel Memory (VCM). VCM is selected because it 
represents a method of providing additional cache on the 
DRAM chip. Furthermore, alike multi-memory-controller, 
VCM is a mature technology because it possessed a certain 
market after it was first introduced by NEC corporation in 
late 1990s [22], but it faded away later. (For more details, 
please refer to section III) 

In order to exploit MLP, VCM might be an ideal 
alternative to traditional DRAM chip on multi-core/many-
core architecture with regard to performance, QoS, power 
and area overheads and even design cost and risky. 
Unfortunately, VCM had been obsolete before we entered 
the multi-core/many-core era. Therefore, we suggest 
memory chip vendors reconsider the VCM technology for 
multi-core/many-core architecture. 

Overall, we have made the following contributions: 
� We find that MLP has a stronger correlation with 

the performance of DRAM system on multi-
core/many-core architecture than RBHR which is 

                                                           
1 It should be noted that, since scheduling multiple 
outstanding memory requests to one bank requires 
significant changes to DRAM state transition diagram, 
parameters, and specification, we just simply increment row 
buffers but do not allow multiple outstanding memory 
requests. This approach is selected because it can also 
improve performance by increasing RBHR.  

considered as the mainly inherent metric to measure 
the performance of traditional DRAM system.  

� In order to leverage the unexploited MLP existing 
in multi-core/many-core system, we have selected 
and evaluated four representative approaches’ 
characteristics in term of performance, QoS, power 
overhead and area cost.    

� According to the experimental results, we find that 
the obsolete VCM exhibits better than the other 
three approaches. We argue that memory chip 
vendors could reconsider the VCM technology for 
multi-core/many-core architecture.  

The rest of the paper is organized as follows. In Section 
II, we introduce the observations of MLP and RBHR on 
multi-core/many-core architecture. In Section III, we present 
our evaluation scheme. We describe the experimental setup 
in Section IV and demonstrate experimental results and 
discussion in Section V. Related work and conclusion are in 
Section VI and Section VII respectively. 

II. BACKGROUND AND MOTIVATION 

A. Memory System 
Figure 1 illustrates the organization of DRAM system. 

Contemporary multi-core/many-core processors often 
integrate one or more memory controllers on the chip. Each 
memory controller consists of 1~3 memory channels. Since 
adding memory channels essentially has the same effect of 
adding memory controllers, we use one-channel per memory 
controller and one-rank per channel in this paper for 
simplicity. So each memory controller manages multiple 
(usually eight) DRAM banks which can independently 
process multiple outstanding memory requests in parallel. 
Each bank is organized as a two-dimensional array of 
DRAM cells, consisting of multiple rows and columns. 
These cells are thus accessed using a DRAM address of 
<bank, row, column> fields, but only one row in a bank can 
be accessed at any given time. This row requires being stored 
in the row-buffer (or sense amplifier) before it could be read 
or written. Each bank of modern DRAM chip has only one 
row buffer whose size is typically 4-16KB. 

If one memory request misses in the row buffer, a row 
buffer conflict occurs. Then the memory controller issues a 
PRECHARGE command to update the row in the row buffer 
back into the memory array, and then issues an ACTIVE 

 

 
Figure 1.  DRAM System Organization. 
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Figure 2.  The Normalized BLP (Bank Level Parallelism) trend on a 32-bank memory system as the number of cores is varied from 1 to 16, where the 

baseline is 1-core. 

command to fetch a new row into the row buffer. Therefore, 
the row buffer conflict causes significant memory access 
delay, and degrades system performance. During the past 
decade, numerous studies have investigated on how to 
improve Row Buffer Hit Rate (RBHR). 

On the other hand, it is vital to keep as many banks busy 
as possible to improve the performance of DRAM system. 
This is an intuitive method for exploiting MLP. For 
traditional DRAM system, the maximum MLP is limited to 
the bank count. There is a notion called DRAM Bank-Level 
Parallelism (BLP) [20] which indicates the number of 
multiple requests being served in parallel in different 
DRAM banks. 

B. MLP on Multicore Architecture 
Previous studies have shown the strong correlation 

between RBHR and DRAM system performance and have 
proposed a number of approaches to improve RBHR during 
the past decade. For example, Rixner et al. [27] proposed 
FR-FCFS scheduling scheme which prioritized those 
memory requests hitting in row buffer. Recent studies 
investigated the RBHR on multicore architecture. Udipi et al. 
[31] illustrated that RBHR decreases significantly from 1 
core (over 60%) to 16 cores (35%) mainly due to the row 
buffer conflicts caused by memory requests from different 
cores interfering with each other. Sudan et al. [30] also 
observed the same RBHR trend in their work.  

In this paper, we have investigated both MLP and RBHR 
characterization for multi-core/many-core architecture on 
our simulation platform. Figure 2 shows the MLP trend in 
term of Normalized BLP on a 32-bank2 memory system as 
the number of cores is varied from 1 to 16, where the 
baseline is 1-core system. Here we ran homogeneous multi-
program workloads with each core ran the same program 
from SPECCPU2006 benchmark. 

We can see that except for 400.perlbench, 403.gcc, 
429.mcf, 444.namd, 447.dealII, 458.sjeng, and 471.omnetpp 
formed workloads, all the other workloads has the 
normalized BLP larger than 5 with 16-core, and the 
geometric mean of all the workloads is 6.16 with 16-core. 
We can also see that the geometric mean of BLP is 
increasing proportionally to the number of cores (or threads) 
increasing. The result shows that with the number of cores 

                                                           
2 In DDR3, each rank can only be configured with 8 banks. 
Here we implement the 32-bank configuration as 4 channels, 
1 rank per channel, and 8 banks per rank. 

increasing, the demand of MLP increasing proportionally, 
which would put a heavy pressure on traditional DRAM 
system. The least increasing of normalized BLP is 
400.perlbench, it is only 1.54 with 16-core. That is because 
it is a memory non-intensive (the Last Level Cache MPKI is 
only 0.04 on 1-core) program, even with 16-core running in 
parallel, it still fails to exploit MLP due to its rare memory 
requests. But for 462.libquantum, which has the most 
increasing rate of normalized BLP, achieves 16.07 in 16-
core, that is because it is memory-intensive and having quite 
good memory locality (the RBHR of it is 91.50% in 1-core). 
In our simulation, we adopt the bank-interleave address 
mapping scheme for exploiting BLP, which means we map 
the least bits of cache block address for bank identity. The 
contiguous memory accesses are mapped interleaved into 
multiple banks (thus exploit BLP). 

Multi-core/many-core architecture poses not only the 
negative problems (e.g., the memory contention and 
unfairness problem) but also exposes large amount of MLP 
which is the aggregation of multiple independent memory 
request streams generated by multiple cores. Incrementing 
the bank count is a straightforward approach to exploit MLP. 
Figure 3 illustrates that on a 16-core system, the Normalized 
Rate of RBHR (Row Buffer Hit Rate), BLP and IPC with 
32-bank memory system, where the baseline is 8-bank setup. 
The 32-bank setup can exploit BLP nearly 2 times more than 
the 8-bank setup, thereby improve overall system 
performance by nearly 1.94 in term of normalized IPC. We 
can also see that the more BLP exploited the more IPC 
speedup achieved. On the other side, the Normalized RBHR 
of 32-bank setup is almost equal with 8-bank setup. For 
some workloads (such as 403.gcc, 459.GemsFDTD, 
471.omnetpp), the normalized RBHR even decreased for 32-
bank compared with 8-bank. The most amount of decreased 
workload is 471.omnetpp, the normalized RBHR is only 
0.50X of the 8-bank setup. The probable reason is that with 
bank-interleave address mapping, the memory requests from 
16-core mixed and interfered with each other, thus further 
decreased row buffer hits. But for 471.omnetpp, the 
normalized BLP speedup achieved at 2.80, which could 
brought the improvement of normalized IPC by 2.35 even 
with worse RBHR. Based on these observations, we can 
conclude that MLP has a stronger correlation with the 
performance of DRAM system than RBHR on future multi-
core/many-core architecture. Leveraging MLP could 
effectively improve system performance.  
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Figure 3.  The Normalized Rate of RBHR (Row Buffer Hit Rate), BLP and IPC with 32-bank memory on a 16-core system, where the baseline is 8-bank 

memory on a 16-core system. 

However, since the memory chip vendors focus on cost-
per-bit and device density, they would not like to increase 
the number of bank because adding more banks means 
requiring more resources for additional sets of row decoders, 
sense amplifiers and column muxes etc. Actually, the 
number of banks integrated in a DRAM chip did not change 
too much in the past decade, from 4 banks in DDR SDRAM 
to 8 banks in DDR3 SDRAM [10]. As the number of cores 
increases more and more, the limited bank count leads to a 
large amount of unexploited MLP. 

III. LEVERAGING MLP 
There are two design philosophies for leveraging MLP. 

One is “design from scratch”, which means substantially 
changing DRAM organization. Several recent studies, e.g., 
Selective Bitline Activation (SBA) and Single Subarray 
Access (SSA) [31], have proposed new DRAM 
organizations to improve DRAM system performance by 
enhancing MLP. However, although this design philosophy 
might bring significant changes, it also might lead to 
unpredictable outcome and high risks. Another design 
philosophy is “keep it simple and stupid (KISS)”, which 
means looking for approaches that are either already existing 
or combinations of existing technologies.  

In this paper, we adopt the KISS design philosophy to 
investigate how to leverage MLP. We select four 
straightforward approaches:  

Multi-Row-Buffer: To keep the design simple, we only 
increment the row buffer count but do not change the 
DRAM state transition diagram, parameter and 
specifications. Therefore, although those row buffers hold 
multiple opened rows, only one row is accessible at any time 
according to the DRAM specification. Actually, this 
approach can improve RBHR other than enhance MLP, so it 
can be used to compare the effectiveness of improving 
RBHR and enhancing MLP.  

Multi-Bank: Given a capacity-fixed DRAM chip, we 
split it into different number of banks. This approach 
requires additional resources for memory controller 
(multiple control logic modules) and DRAM chip (address 
decoders and row buffers etc.), but it does not need to 
change the DRAM specification. 

Multi-Memory-Controller: We increase the number of 
on-chip memory controllers. This approach inherently 
increases the number of banks and should have the same 

effect as multi-bank. However, it consumes on-chip 
resources, especially the pin count.  

Virtual-Channel-Memory (VCM): VCM represents a 
method of providing additional cache on the DRAM chip. In 
each rank, there are 16~32 channel buffers, each holding one 
segment of row buffer. The DRAM specification is slightly 
changed to support operating channel buffers, but VCM 
memory controller is compatible to traditional DRAM. 
Furthermore, VCM is a mature technology and ever 
possessed a certain market around 2000. 

Since VCM requires changes to DRAM specification, 
we would like to describe it in details. VCM was first 
introduced by NEC corporation in late 1990s [22]. It was 
intended for a wide range of applications such as multimedia 
and web servers. VCM puts a set of fast channel buffers 
within memory chips and the number of channel buffers is 
usually 4 or 8 times more than that of banks. Hence, VCM is 
expected to provide faster access as well as more 
concurrency. 

VCM Organization: Figure 4 illustrates VCM’s 
conceptual organization. Channel buffers are introduced as 
an extra storage layer between memory controller and 
DRAM banks. Two commands, i.e., PREFETCH (reading 
segment data from row buffer to channel) and RESTORE 
(writing segment data from channel to row buffer), are also 
introduced in order to operate channels. As shown in the 
figure, each row buffer is divided into 4-16 segments which 
are transfer units between banks and channels. Memory 
operations (commands) are divided into foreground 
operations for channels (READ and WRITE commands) and 
background operations for DRAM banks (ACTIVE, 
PRECHARGE, PREFETCH and RESTORE commands). 
NEC’s VCM is implemented to be compatible to the 
industry standard SDRAM and uses the same command 
protocol and interface as SDRAM/DRAM. Because 
channels and DRAM banks are independent, foreground 
operations and background operations can also be executed 
independently. To further enhance VCM’s performance,  
channels and the row buffers (banks) of the original VCM 
are fully associative, which means that any channels can 
store segment data from any row buffers (banks) and can be 
written back to any row buffers (banks). Because channels 
and DRAM banks are independent, memory controller can 
schedule the foreground and background operations 
concurrently, which allows the memory controller to exploit 
as more MLP as possible. 
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Figure 4.  Conceptual Organization of VCM. 

VCM for Multicore Architecture: We have 
implemented VCM on our simulation platform. Figure 5 
illustrates the design of VCM memory controller which is 
responsible for scheduling memory requests from different 
cores. There are three main distinctions between a VCM 
memory controller and a traditional DRAM controller: 

1) The channels are decoupled with bank, which 
means that the channels can hold any segment data 
from any bank/row. Thus each channel needs a tag 
register to record memory address of the segment it 
holds (i.e., <bank, row, segment>).  

2) There are channel-level schedulers to schedule 
VCM commands to channels. Those schedulers 
need to keep track of their corresponding channels’ 
state to determine which command should be 
issued.  

3) There are bank-level schedulers for keeping track 
of the state of the banks. The bank state information 
and the channel state information are used to select 
requests in request buffer. 

NEC’s VCM usually has 8 to 32 channels. In fact, 
channel buffers operate like a fully associative cache with 
write through policy. Take reading data from a memory 
bank as an example. Memory controller first looks up 
registers to determine whether the required data is already in 
a channel; if the read request misses in all channels, the 
bank-level controller will issue an Active command to the 
corresponding bank to fetch a row into the row buffer; after 
2 (tPAD) cycles, a Prefetch command issued by a channel-
level scheduler follows to transfer one segment of the row 
buffer to a channel which memory controller selects for 
replacing; then 2 (tPCD) cycles later, the Read command 
can be issued to the new refilled channel and after another 2 
cycles (read latency) the data can be present in the data bus; 
meanwhile, if using a close-page policy, a Precharge 
command is issued to the bank to close the row; for an 8 
burst length, the data transfer requires 4 cycles with double 
data rate (DDR). As for writing data into a channel buffer, 
Write, Restore and Active commands are issued 
consecutively , and finally a Precharge command is used to  
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Figure 5.  VCM Memory Controller. 

close the corresponding row. According to the datasheet [22], 
we conclude that the original NEC’s VCMs adopt write-
through policy for channel buffers and close-page policy for 
row buffer. 

For more details of VCM, please refer to [26]3.  

IV. EXPERIMENTAL SETUP 

A. Evaluation Tools 
We implement and evaluate the four approaches using an 

in house cycle-accurate x86 CMP simulator. The functional 
front-end is based on Pin [15] and iDNA [4]. We model the 
memory system in detail, faithfully capturing bandwidth 
limitations, contention, and enforcing bank/channel/bus 
conflicts. Table I shows the major DRAM and processor 
parameters. We model a modest multi-core (16 core) system 
with one channel as baseline to produce heavy access 
pressure on memory system to simulate the environment in 
future multi-core/many-core system, meanwhile limiting 
simulation time. The VCM was implemented in the memory 
system, the baseline configuration is 32 Virtual Channels 
within each DRAM chip. We use CACTI 6.5[1] to evaluate 
area and power parameters. 

B. Workloads 
We use the SPEC CPU2006 benchmarks for evaluation. 

We compile each benchmark using gcc 4.1.2 with -O3 
optimizations and choose a representative simulation phase 
using PinPoints [15]. We select memory intensive 
benchmarks and memory non-intensive benchmarks from 
SPEC CPU2006. Table II and Table III list their 
characteristics (including IPC, MPKI, RBHR and BLP). We 
run multiple programs on multicore system where each core 
is dedicated to one program. We use homogeneous 
workloads (multiple instances of the same program) to 
evaluate performance and heterogeneous workloads (the 
combinations of different programs) to evaluate QoS. All 
programs are run with their reference (maximum size) input  

                                                           3 Since the original VCM datasheet of NEC [22] has been 
outdated on the Internet. 
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TABLE I.  SIMULATED TARGET SYSTEM CONFIGURATION 

Processor Pipeline 3 GHz processor, 128-entry instruction window (64-entry issue queue, 64-entry store queue), 12-stage pipeline 
Fetch/Exec/Commit width 3 instructions per cycle in each core; only 1 can be a memory operation 

L1 Caches 32 K-byte per-core, 4-way set associative, 64-byte block size, 2-cycle latency 
L2 Caches 512 K-byte per core, 8-way set associative, 64-byte block size, 12-cycle latency, 32 MSHRs 

Baseline DRAM controller 
(on-chip) 

FR-FCFS, close-page row buffer policy for VCM, open-page for other approaches; 128-entry request buffer, 64-
entry write data buffer, reads prioritized over writes, XOR-based address-to-bank mapping [33].  

DRAM chip parameters Micron DDR3-1600 timing parameters , tCL=15ns, tRCD=15ns, tRP =15ns; 8 banks, 8K-byte row-buffer per bank 

DIMM configuration Single-rank, 8 DRAM chips put together on a DIMM (dual in-line memory module) to provide a 64-bit wide channel 
to DRAM 

Round-trip L2 miss latency 
with VCM 

For a 64-byte cache line, row-buffer hit: 200 cycles, closed: 300 cycles, conflict: 400 cycles. 
VCM additional Latency: Active-to-Prefetch Latency (100 cycles), Prefetch-to-Read/Write Latency (80 cycles), 
Read Latency (200 cycles) 

VCM parameters 1K-byte per segment, 8 segments per row-buffer,  8 requests per VC request buffer and 128 requests for the Recycle 
Request Buffer 

TABLE II.  MEMORY INTENSIVE BENCHMARK CHARACTERISTICS 

Benchmark Type IPC MPKI RBHR BLP 
401.bzip2 INT 1.07  3.42  80.93  1.58  
429.mcf INT 0.18  71.86  10.82  5.05  
433.milc FP 0.27  20.59  86.54  1.29  
436.cactusADM FP 0.45  6.31  19.70  1.32  
437.leslie3d FP 0.35  17.10  71.04  1.71  
450.soplex FP 0.19  38.99  88.27  1.71  
456.hmmer INT 0.77  5.19  49.76  1.29  
459.GemsFDTD FP 2.41  3.78  52.70  2.87  
462.libquantum INT 1.25  6.90  91.50  1.03  
464.h264ref INT 3.28  2.39 85.20  1.12  
470.lbm FP 0.56  35.26  85.85  3.31  
471.omnetpp INT 2.10  5.85  62.70  3.56  
473.astar INT 1.18  6.39  51.80  1.47  
481.wrf FP 3.07  1.98  71.39  1.03  
482.sphinx3 FP 2.98  2.47  81.97  1.86  
483.xalancbmk INT 2.22  3.70  68.68  2.05  

 
sets. For multi-program workloads: we fast forward 20 
million instructions for each process to warm up the 
simulator, and then execute another 100 million instructions 
for each core, and then collect simulation data such as IPC, 
memory access latency and power consumption. 

C. Metrics 
We evaluate the benchmark by four main metrics, i.e., 

performance, QoS, power consumption and area cost. For 
individual benchmark, we evaluate performance in term of 
IPC. For whole system, we use the Unfairness metric to 
estimate QoS and evaluate performance in term of 
System_Throughput [12][29]:  

Slowdown� =
����

��	
��

����
	���  ,  Unfairness = ���{����������}

���{����������}
 

System_Throughput =� {���������}
�

 

D. Experimental schemes 
We adopt three experimental schemes: 1) we use 

homogeneous workloads to evaluate system performance in 
term of average IPC. 2) We use heterogeneous workloads to 
evaluate QoS effect of the approaches in term of Unfairness 
and System_Throughput. 3) We demonstrate the area cost 
and power consumption by the CACTI tool. 

TABLE III.  MEMORY NON-INTENSIVE BENCHMARK CHARACTERISTICS 

Benchmark Type IPC MPKI RBHR BLP 
400.perlbench INT 2.05  0.04  68.54  1.33  
403.gcc INT 1.73  0.22  62.12  1.65  
435.gromacs FP 1.55  0.95  80.85  1.43  
444.namd FP 2.44  0.05  91.51  1.05  
445.gobmk INT 1.82  0.60  58.92  1.35  
447.dealII FP 1.85  0.08  83.85  1.17  
453.povray FP 1.88  0.00  88.54  1.58  
454.calculix FP 1.73  0.01  84.70  1.17  
458.sjeng INT 1.94  0.43  24.20  1.54  
465.tonto FP 2.10  0.16  10.85  1.73  

 
Here, IPC: Instruction per Cycle, MPKI: L2 Cache 

Misses per 1000 Instructions, RBHR: Row-Buffer Hit Rate, 
BLP: Bank Level Parallelism. 

 

V. EXPERIMENTAL RESULTS 

A. Performance 
Figure 6 shows the normalized IPC speedup of memory-

intensive homogenous workloads running on a baseline 
multicore system which has 16-core and 8 memory banks. 
We apply the four approaches to the baseline system and 
measure their IPC speedups.  

For the multi-row-buffer approach,  even using eight 8-
KB row buffers in one bank, the GMEAN performance 
improvement is only 1.22X. As mentioned above, this 
approach can improve RBHR but is still limited to bank-
level parallelism. Figure 7 further illustrates the speedups on 
systems with different number of cores. For the 1-core 
system, incrementing row-buffer can achieve almost the 
same improvement as the other approaches. However, as the 
number of cores increases, its performance scalability is 
very poor, compared with other approaches. The multi-bank 
and the multi-memory-controller approaches exhibit good 
IPC speedups. According to Figure 6, 4 memory controllers 
exhibit the best improvement, by 2.44X while 2 memory 
controllers setup improves performance by 1.63X. The 32-
bank scheme and the 16-bank scheme exhibit performance 
improvement by 2.44X and 1.63X respectively, and 32-bank 
can achieve nearly the same improvement as four memory 
controllers. 
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Figure 6.  The Normalized IPC Speedup on 16-core system, the baseline is 8-bank with 1-row buffer. Here, RB: Row Buffer, MC: Memory Controller. 

 
Figure 7.  Performance scalability against the increasing core numbers, in terms of Normalized IPC. 

 
Figure 8.  The Normalized BLP on a 16-core system, the baseline is 8-Bank. 

On average, VCM with 32 1KB-channel buffers 
achieves 2.21X performance speedup and also exhibits good 
scalability, from 1.24X for single-core to 2.21X for 16-core. 
In fact, an interesting phenomenon is that its RBHR 4  is 
much less than the multi-row-buffer approach. However, 
according to Figure 8, the MLP (in term of BLP here) 
improves significantly. Even on a 16-core system with only 
8 banks, the VCM with 32-channel can exploit normalized 
MLP nearly 2.09x compared with 8-Bank. The VCM’s 
capability of exploiting MLP benefits from its organization 
that channels and DRAM banks are independent so that 
memory controller can schedule the bank operations and the 
channel operations concurrently. This phenomenon is strong 
evidence that the performance on multicore architecture is 
more dependent of MLP than RBHR. We further investigate 
how the latter three approaches exploit more MLP. Figure 9 
illustrates the average access latency of memory requests. 
The latency is divided into two parts: DRAM accessing 
latency and queuing latency. In fact, the DRAM accessing 
latencies are almost the same for all approaches, however, 
the queuing delay at memory controller side reduces 
significantly for the VCM approach and the multi-bank (the 
same as multi-MC) approach. Take VCM as an example, for 

                                                           
4 For VCM, RBHR means the virtual channel hit rate rather 
than the traditional row buffer hit rate for banks. 

each individual request, although the latency of background 
operations (i.e., accessing DRAM latency) increases slightly 
by 7.3%, the queuing latency substantially decreases, from 
8.75x (of baseline) to 3.50x for 32-channel VCM. 

B. QoS 
The memory QoS problem means that unfair servicing of 

different cores’ requests by the memory controller can lead 
to application/core starvation [21][23] and even denial of 
memory service for some cores [19]. For example, Mutlu et 
al. [21] showed that the slowdowns for some memory non-
intensive applications can increase from 7.74X for 4-core 
system to 11.35X for 8-core system whereas the memory-
intensive application experienced the slowdowns of only 
1.04X and 1.09X respectively. Some other works [18-20, 25] 
also demonstrated the similar unfair phenomenon. Recent 
studies on memory controller optimization, such as PAR-BS 
[20] and ATLAS [13], have shown their effectiveness in 
improving QoS. 

According to our above analysis, VCM is better than the 
other three approaches for performance. Thus in this section, 
we mainly evaluate QoS for VCM. Moreover, we have 
integrated the PAR-BS and ATLAS scheme into VCM. We 
use the following metrics to evaluate QoS: Unfairness and 
System_Throughput.    
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Figure 9.  Breakdown of memory access latency on a 16-core system, where the baseline is Accessing DRAM Latency of 1-Row. 

                            

                            (a)Memory-intensive workloads                                                                             (b)Mixed workloads 

Figure 10.  The Unfairness and System Throughput on 16-core system with and without VCM: (a) memory-intensive worklaods; (b)mixed memory-intensive 
and memory-non-intensive workloads. 

Figure 10(a) shows the average Unfairness and 
System_Throughput of 16 memory-intensive workloads on a 
16-core 8-bank system with and without VCM. Each 
workload includes 16 memory-intensive programs which are 
generated by randomly selected from Table II. We can see 
that without VCM, the two state of the art scheduling 
algorithm could efficiently improve system Qos  by 
reducing unfairness from 16.74 to 7.53 (reduce 55.02%) for 
PARBS and 7.36 (reduce 56.03%) for ATLAS. Meanwhile 
they can improve System_Throught by 10.13% for PARBS 
(4.13 vs. 3.75) and 13.33% for ATLAS (4.25 vs. 3.75). On 
the other hand, VCM exhibits good performance both in 
QoS and System_Throughput even with simple memory 
schedule algorithm (FR-FCFS). It can reduce unfairness by 
64.16% (6.00 vs. 16.74) and significantly improve system 
throughput by 90.67% (7.15 vs. 3.75), both of these are even 
better than the two state of the art memory scheduling 
algorithm without VCM. There are two reasons: 1) the fewer 
memory requests stay in queue, the less is the probability of 
unfairness. As shown in Figure 9, VCM can significantly 
reduce queuing latency, so it can also substantially 
eliminates unfairness; 2) Channels are independent of banks 
and they can operate simultaneously, hence more memory 
requests can be issued without the limitation of bank count. 
Therefore, those requests with low priority have more 
chances to be scheduled. Although PAR-BS and ATLAS 
algorithms can largely reduce unfairness by ranking threads’ 
requests, they still subject to the bank-level parallelism. 
When applying PAR-BS and ATLAS to VCM, the 
Unfairness metrics change slightly to 6.49 (+8.17%) and 
5.99 (-0.17%) respectively, and that is nearly the same for 
System_Throughput by 6.01% and 0.14%. Thus we can 
conclude that VCM could perform well with simple 

FRFCFS memory scheduling algorithm for memory-
intensive workloads, further, figure 10(b) could also prove 
this view for mixed memory-intensive and memory-non-
intensive workloads. 

Figure 10(b) shows that for mixed memory-intensive and 
memory-non-intensive workloads, without VCM the 
PARBS and ATLAS reduced unfairness quite slightly (3.24% 
and 3.13%), but the VCM with FRFCFS could also 
effectively reduce unfairness by 47.18% (29.49 vs. 55.83) 
and improve system throughput by 66.19% (6.27 vs. 10.42). 
These results show that VCM could be suitable for various 
workloads in multi-core/many-core architecture. 

C. Area and Power Cost 
We use CACTI to estimate area and power cost for the 

four approaches. Table IV illustrates the area and energy 
parameters for 2GB DRAM with 32nm technology. Given a 
fixed DRAM size, the area is dependent on the layout of 
those components. For multi-bank, the area increases 
significantly mainly because of the area of large row buffers. 
It should be noted that when the DRAM chip is divided into 
more banks, the DRAM arrays become smaller so that the 
CACTI can figure out a smaller area (e.g., area of 128-bank 
is smaller than area of 64-bank). The multi-row-buffer 
approach and the multi-memory-controller approach also 
suffer from the area penalty. In particular, multi-memory-
controller has the biggest area cost because adding one 
memory controller means adding a set of banks as well as 
consuming chip pins which have been scarce resources in 
multicore systems. However, VCM almost has no area cost, 
increasing area by only 0.5% for 32 1KB-channels and 7.7% 
for 128 channels.  
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TABLE IV.  AREA AND ENERGY PARAMETERS 

 
Here, DRPA: Dynamic Read per Access (nJ); LP: Leakage Power (mW); AE: Active Energy (nJ). 

We evaluate power consumption in both high 
performance (HP) mode and low power standby (LPS) mode. 
For individual DRAM operations, experimental results show 
that there are no significant differences among different 
configurations. For 32-channel VCM in HP mode, each read 
operation consumes about 2.19 nJ, increasing slightly by 
about 3.6% compared to the baseline 8-bank DRAM. 

VI. RELATED WORKS 
Performance Issue: Rixner et al. proposed FR-FCFS 

[27] scheduling algorithm which could improve memory 
bandwidth by 40%~93% for streaming applications. McKee 
et al. [16] showed that dynamically reordering memory 
requests can increase the row buffer hit rate for scientific 
and multimedia applications. Hur et al. [9] proposed the 
adaptive history-based (AHB) scheduler which improves 
performance by 7.6%~15.6%. There is still a lot of work [28, 
37] focusing on reordering memory requests. However, most 
of these studies are aim to take full advantage of the row 
buffer within each bank, still being limited to bank-level 
parallelism. Agrawal et al. [2] proposed virtually pipelined 
memory (VPM) which provided a deeper pipeline for 
handling memory requests. Although VPM might increase 
access individual request latency, it is able to improve 
effective memory bandwidth. This is because that pipelining 
allows more on-the-fly memory requests. Nevertheless, 
these schemes do not consider enhancing MLP.  

VCM represents a number of approaches which add 
additional buffer into DRAM chip to exploit MLP. The 
similar idea was first proposed by Alexander and Kedem [3]. 
They proposed to integrate some small buffers in DRAM 
chip as prediction table for a DRAM prefetching scheme. 
Zhao et al. [34] implemented an additional off chip SRAM 
Cache to exploit locality for larger workload with higher 
bandwidth. Jiang et al.[11] further improved the DRAM 
Cache with some effective filters to cache only hot pages.  

Several studies focus on changing DRAM’s organization  
in order to improve performance as well as reduce power. 
Zheng et al. proposed Mini-rank [35] and decoupled-DIMM 
[36] to address DRAM power issue. Yamauchi et al. [32] 
present hierarchical multi-bank DRAM composed of 8 sub-

banks, improving performance about 65%. More recently, 
Udipi et al. [31] argued that traditional DRAM system has 
already not suitable for multicore system because of 
overfetch problem which wastes significant energy. They 
proposed two main aggressive schemes including Selective 
Bit-line Activation (SBA) and Single Subarry Access (SSA) 
which are able to reduce energy by 5X~6X and  
 performance by 54% due to reduced queuing delays.  

QoS Issue: Both of Rafique et al. [25] and Nesbit et al. 
[23] studied QoS based on fair queuing mechanism. Mutlu 
et al. proposed STFM [21] and PAR-BS [20] to solve 
unfairness problems for multicore system. Furthermore, Kim 
et al. [13] proposed ATLAS algorithm for multiple memory 
controllers system which could improve system throughput 
by 8.4%~10.8%. Eiman et al. proposed FST algorithm [6] 
which throttles down cores causing unfairness by limiting 
the number of their available MSHRs.  

VII. CONCLUSIONS 
In this paper, we have found that MLP has a stronger 

correlation with the performance of DRAM system on 
multi-core/many-core architecture than RBHR which is 
considered as the only inherent metric to measure the 
performance of DRAM system in the past decade. In order 
to leverage the unexploited MLP existing in multi-
core/many-core system, we have selected and evaluated four 
representative approaches by measuring performance, QoS, 
power overhead and area cost. According to the 
experimental results, we have found that the obsolete VCM 
exhibits better than the other three approaches. We argue 
that memory chip vendors could reconsider the VCM 
technology for multi-core/many-core architecture.  
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