
A Study of Leveraging Memory Level Parallelism for DRAM System on Multi-
Core/Many-Core Architecture

Licheng Chen1,2, Yongbing Huang1,2, Yungang Bao1, Guangming Tan1, Zehan Cui1,2, Mingyu Chen1

1State Key Laboratory of Computer Architecture, Institute of Computing Technology, Chinese Academy of Sciences
2University of Chinese Academy of Sciences

{chenlicheng, huangyongbing, baoyg, tgm, cuizehan, cmy}@ict.ac.cn

Abstract—DRAM system has been more and more critical on
modern multi-core/many-core architecture where the Moore’s
law has been made effect on increasing the number of cores
integrated in a processor chip. The performance of DRAM
system is usually measured in term of bandwidth and latency,
which are regarded as inherently depending on Row Buffer Hit
Rate (RBHR) according to previous studies. In this paper, we
find that Memory Level Parallelism (MLP) exhibits a stronger
correlation with the performance of DRAM system on multi-
core/many-core architecture than RBHR, and promoting MLP
significantly improves DRAM system performance. In order to
exploit the MLP, we have evaluated various approaches
including multi-bank, multi-row-buffers, multi-memory-
controllers and the obsolete Virtual Channel Memory (VCM).
The experimental results show that VCM is a better alternative
to traditional DRAM chip on multi-core/many-core
architecture than the other three approaches because VCM
has almost all the advantages of the others: 1) it can improve
homogeneous workloads’ IPC by 2.21X on a 16-core system
with 32 virtual channels due to leveraging unexploited MLP. 2)
It can also promote Quality-of-Service (QoS) of DRAM system
by removing unfairness while memory controllers serve
memory requests. 3) It can save energy and has low area costs.
Unfortunately, VCM, which was proposed in the late 1990s,
faded away before multi-core/many-core became dominated.
Therefore, we suggest memory chip vendors reconsider the
VCM technology for multi-core/many-core architecture.

Keywords-DRAM; Virtual Channel Memory; Memory Level
Parallelism; Qos

I. INTRODUCTION
“MLP yes! ILP no!” Memory Level Parallelism (MLP)

was originally proposed in term of the number of outstanding
cache misses by Andrew Glew [8], in order to persuade
people to do research that helps to exploit MLP.
Subsequently, numerous previous studies investigated
microarchitectures to enhance MLP from on-chip (processor)
side, such as MLP-aware cache replacement [24], MLP-
aware prefetcher [7] and runahead execution [5]. In these
studies, due to limited number of cores and limited
parallelism resource (such as Instruction Window, MSHR)
on chip, processor was the bottleneck to exploit MLP. But
this is not right for multi-core/many-core architecture any
more, with the rapid increasing number of cores, the shared
memory system suffers heavy pressure to service requests
form all cores. Thus for multi-core/many-core architecture,
the memory system has become the main bottleneck to
exploit MLP due to its relative slowly increasing parallelism

resource (channel, rank, and bank). The “Memory Wall”
problem under multi-core/many-core architecture becomes
more and more serious.

To moderate “Memory Wall” problem, contemporary
servers would adopt high memory configuration, which
could provide high memory bandwidth and MLP. For
example, POWER7 processor integrates 8 cores with 4
threads each and two 4-channel DDR3 memory controllers,
which could provide as high as 100GBps memory bandwidth
if all the channels are fully exploited. However, due to cost
and power budget limitation, a large part of servers were not
configured with full memory DIMMs/channels exploited. A
statistical data from a server vendor company showed that,
during 2011, the most popular server sold is configured with
2 sockets, each socket has 6 cores with 6 memory DIMM
slots, among these, only 15% of the servers are sold with full
DIMMs exploited, 50% with half DIMMs exploited, and 35%
with less than half DIMMs exploited. Thus, with the budget
limitation, it becomes more important to improve memory
bandwidth efficiency and exploit MLP to shorten the
memory wall gap.

However, from the DRAM memory system side, because
each DRAM bank is integrated with only one 4KB or 8KB
row-buffer (or sense-amplifier) which holds data from a
100xMB DRAM array, the Row Buffer Hit Rate (RBHR) is
considered as a key factor of the performance of DRAM
system. Most researchers have made significant
contributions on reducing RBHR by memory access
scheduling [27], address mapping [33] and so on. During the
past years, the prevalence of multi-core/many-core
architecture poses new challenges of performance, power
and QoS to DRAM system which is shared by all cores.

Recent studies have proposed a number of solutions to
address the challenges caused by multi-core system [6, 18,
20, 21, 23, 25, 26, 37]. Nevertheless, most of the studies
were motivated by improving row buffer hit rate (RBHT) of
DRAM system, without considering the method of
enhancing MLP for DRAM system. Although previous
studies show the strong correlation between RBHR and the
performance of DRAM system, we find that MLP has even a
stronger correlation with the performance of DRAM system
than RBHR in multi-core/many-core architecture.
Experimental results show that the average IPC of
homogeneous multi-program workloads on a 16-core system
improves by 1.95X when incrementing the DRAM banks
from 8 to 32, whereas the RBHRs are almost the same for
the 8-bank and 32-bank DRAM configurations, while the

2013 12th IEEE International Conference on Trust, Security and Privacy in Computing and Communications

978-0-7695-5022-0/13 $26.00 © 2013 IEEE

DOI 10.1109/TrustCom.2013.145

1206

bank-level MLP increases by about 2.00X (please refer to
section II for detail).

On multi-core/many-core architecture, each core can
generate an independent memory request stream. Memory
controllers are responsible for scheduling the requests to the
available DRAM banks. If there are no available banks, the
requests have to queue in the request buffer of memory
controller. A recent study has shown that the queuing-delay
has become the dominant portion of one memory request’s
access latency on multicore system [31]. Given the provision
of more available banks, more memory requests would be
scheduled, which means there is still a large amount of
unexploited MLP due to memory limited parallel resource in
multi-core/many-core system.

There are several approaches to enhance MLP. As
mentioned above, simply incrementing bank count within a
DRAM chip is a straightforward method to enhance MLP.
There are other methods to enhance MLP, such as using
multiple memory controllers, splitting bank into sub-banks
and incrementing the number of row buffers. For example,
using multiple memory controllers is a widely used method
to improve DRAM performance on multicore architecture,
but the number of memory controllers is not scalable due to
the limited chip pin count. Udipi et al. [31] proposed two
new DRAM organizations which contain a large number of
sub-banks (or sub-arrays) and show performance
improvement by 54%. However, these aggressive
approaches substantially change the DRAM organization,
thereby cause significant re-design cost and high risks.

In this paper, we have evaluated four representative
straightforward approaches to leverage MLP for DRAM
system on multi-core architecture: 1) multi-bank, 2) multi-
row-buffer 1 , 3) multi-memory-controller and 4) Virtual
Channel Memory (VCM). VCM is selected because it
represents a method of providing additional cache on the
DRAM chip. Furthermore, alike multi-memory-controller,
VCM is a mature technology because it possessed a certain
market after it was first introduced by NEC corporation in
late 1990s [22], but it faded away later. (For more details,
please refer to section III)

In order to exploit MLP, VCM might be an ideal
alternative to traditional DRAM chip on multi-core/many-
core architecture with regard to performance, QoS, power
and area overheads and even design cost and risky.
Unfortunately, VCM had been obsolete before we entered
the multi-core/many-core era. Therefore, we suggest
memory chip vendors reconsider the VCM technology for
multi-core/many-core architecture.

Overall, we have made the following contributions:
� We find that MLP has a stronger correlation with

the performance of DRAM system on multi-
core/many-core architecture than RBHR which is

1 It should be noted that, since scheduling multiple
outstanding memory requests to one bank requires
significant changes to DRAM state transition diagram,
parameters, and specification, we just simply increment row
buffers but do not allow multiple outstanding memory
requests. This approach is selected because it can also
improve performance by increasing RBHR.

considered as the mainly inherent metric to measure
the performance of traditional DRAM system.

� In order to leverage the unexploited MLP existing
in multi-core/many-core system, we have selected
and evaluated four representative approaches’
characteristics in term of performance, QoS, power
overhead and area cost.

� According to the experimental results, we find that
the obsolete VCM exhibits better than the other
three approaches. We argue that memory chip
vendors could reconsider the VCM technology for
multi-core/many-core architecture.

The rest of the paper is organized as follows. In Section
II, we introduce the observations of MLP and RBHR on
multi-core/many-core architecture. In Section III, we present
our evaluation scheme. We describe the experimental setup
in Section IV and demonstrate experimental results and
discussion in Section V. Related work and conclusion are in
Section VI and Section VII respectively.

II. BACKGROUND AND MOTIVATION

A. Memory System
Figure 1 illustrates the organization of DRAM system.

Contemporary multi-core/many-core processors often
integrate one or more memory controllers on the chip. Each
memory controller consists of 1~3 memory channels. Since
adding memory channels essentially has the same effect of
adding memory controllers, we use one-channel per memory
controller and one-rank per channel in this paper for
simplicity. So each memory controller manages multiple
(usually eight) DRAM banks which can independently
process multiple outstanding memory requests in parallel.
Each bank is organized as a two-dimensional array of
DRAM cells, consisting of multiple rows and columns.
These cells are thus accessed using a DRAM address of
<bank, row, column> fields, but only one row in a bank can
be accessed at any given time. This row requires being stored
in the row-buffer (or sense amplifier) before it could be read
or written. Each bank of modern DRAM chip has only one
row buffer whose size is typically 4-16KB.

If one memory request misses in the row buffer, a row
buffer conflict occurs. Then the memory controller issues a
PRECHARGE command to update the row in the row buffer
back into the memory array, and then issues an ACTIVE

Figure 1. DRAM System Organization.

1207

Figure 2. The Normalized BLP (Bank Level Parallelism) trend on a 32-bank memory system as the number of cores is varied from 1 to 16, where the

baseline is 1-core.

command to fetch a new row into the row buffer. Therefore,
the row buffer conflict causes significant memory access
delay, and degrades system performance. During the past
decade, numerous studies have investigated on how to
improve Row Buffer Hit Rate (RBHR).

On the other hand, it is vital to keep as many banks busy
as possible to improve the performance of DRAM system.
This is an intuitive method for exploiting MLP. For
traditional DRAM system, the maximum MLP is limited to
the bank count. There is a notion called DRAM Bank-Level
Parallelism (BLP) [20] which indicates the number of
multiple requests being served in parallel in different
DRAM banks.

B. MLP on Multicore Architecture
Previous studies have shown the strong correlation

between RBHR and DRAM system performance and have
proposed a number of approaches to improve RBHR during
the past decade. For example, Rixner et al. [27] proposed
FR-FCFS scheduling scheme which prioritized those
memory requests hitting in row buffer. Recent studies
investigated the RBHR on multicore architecture. Udipi et al.
[31] illustrated that RBHR decreases significantly from 1
core (over 60%) to 16 cores (35%) mainly due to the row
buffer conflicts caused by memory requests from different
cores interfering with each other. Sudan et al. [30] also
observed the same RBHR trend in their work.

In this paper, we have investigated both MLP and RBHR
characterization for multi-core/many-core architecture on
our simulation platform. Figure 2 shows the MLP trend in
term of Normalized BLP on a 32-bank2 memory system as
the number of cores is varied from 1 to 16, where the
baseline is 1-core system. Here we ran homogeneous multi-
program workloads with each core ran the same program
from SPECCPU2006 benchmark.

We can see that except for 400.perlbench, 403.gcc,
429.mcf, 444.namd, 447.dealII, 458.sjeng, and 471.omnetpp
formed workloads, all the other workloads has the
normalized BLP larger than 5 with 16-core, and the
geometric mean of all the workloads is 6.16 with 16-core.
We can also see that the geometric mean of BLP is
increasing proportionally to the number of cores (or threads)
increasing. The result shows that with the number of cores

2 In DDR3, each rank can only be configured with 8 banks.
Here we implement the 32-bank configuration as 4 channels,
1 rank per channel, and 8 banks per rank.

increasing, the demand of MLP increasing proportionally,
which would put a heavy pressure on traditional DRAM
system. The least increasing of normalized BLP is
400.perlbench, it is only 1.54 with 16-core. That is because
it is a memory non-intensive (the Last Level Cache MPKI is
only 0.04 on 1-core) program, even with 16-core running in
parallel, it still fails to exploit MLP due to its rare memory
requests. But for 462.libquantum, which has the most
increasing rate of normalized BLP, achieves 16.07 in 16-
core, that is because it is memory-intensive and having quite
good memory locality (the RBHR of it is 91.50% in 1-core).
In our simulation, we adopt the bank-interleave address
mapping scheme for exploiting BLP, which means we map
the least bits of cache block address for bank identity. The
contiguous memory accesses are mapped interleaved into
multiple banks (thus exploit BLP).

Multi-core/many-core architecture poses not only the
negative problems (e.g., the memory contention and
unfairness problem) but also exposes large amount of MLP
which is the aggregation of multiple independent memory
request streams generated by multiple cores. Incrementing
the bank count is a straightforward approach to exploit MLP.
Figure 3 illustrates that on a 16-core system, the Normalized
Rate of RBHR (Row Buffer Hit Rate), BLP and IPC with
32-bank memory system, where the baseline is 8-bank setup.
The 32-bank setup can exploit BLP nearly 2 times more than
the 8-bank setup, thereby improve overall system
performance by nearly 1.94 in term of normalized IPC. We
can also see that the more BLP exploited the more IPC
speedup achieved. On the other side, the Normalized RBHR
of 32-bank setup is almost equal with 8-bank setup. For
some workloads (such as 403.gcc, 459.GemsFDTD,
471.omnetpp), the normalized RBHR even decreased for 32-
bank compared with 8-bank. The most amount of decreased
workload is 471.omnetpp, the normalized RBHR is only
0.50X of the 8-bank setup. The probable reason is that with
bank-interleave address mapping, the memory requests from
16-core mixed and interfered with each other, thus further
decreased row buffer hits. But for 471.omnetpp, the
normalized BLP speedup achieved at 2.80, which could
brought the improvement of normalized IPC by 2.35 even
with worse RBHR. Based on these observations, we can
conclude that MLP has a stronger correlation with the
performance of DRAM system than RBHR on future multi-
core/many-core architecture. Leveraging MLP could
effectively improve system performance.

0
5
10
15
20

N
or

m
al

iz
ed

 B
LP

 1-Core 4-Core 8-Core 16-Core

1208

Figure 3. The Normalized Rate of RBHR (Row Buffer Hit Rate), BLP and IPC with 32-bank memory on a 16-core system, where the baseline is 8-bank

memory on a 16-core system.

However, since the memory chip vendors focus on cost-
per-bit and device density, they would not like to increase
the number of bank because adding more banks means
requiring more resources for additional sets of row decoders,
sense amplifiers and column muxes etc. Actually, the
number of banks integrated in a DRAM chip did not change
too much in the past decade, from 4 banks in DDR SDRAM
to 8 banks in DDR3 SDRAM [10]. As the number of cores
increases more and more, the limited bank count leads to a
large amount of unexploited MLP.

III. LEVERAGING MLP
There are two design philosophies for leveraging MLP.

One is “design from scratch”, which means substantially
changing DRAM organization. Several recent studies, e.g.,
Selective Bitline Activation (SBA) and Single Subarray
Access (SSA) [31], have proposed new DRAM
organizations to improve DRAM system performance by
enhancing MLP. However, although this design philosophy
might bring significant changes, it also might lead to
unpredictable outcome and high risks. Another design
philosophy is “keep it simple and stupid (KISS)”, which
means looking for approaches that are either already existing
or combinations of existing technologies.

In this paper, we adopt the KISS design philosophy to
investigate how to leverage MLP. We select four
straightforward approaches:

Multi-Row-Buffer: To keep the design simple, we only
increment the row buffer count but do not change the
DRAM state transition diagram, parameter and
specifications. Therefore, although those row buffers hold
multiple opened rows, only one row is accessible at any time
according to the DRAM specification. Actually, this
approach can improve RBHR other than enhance MLP, so it
can be used to compare the effectiveness of improving
RBHR and enhancing MLP.

Multi-Bank: Given a capacity-fixed DRAM chip, we
split it into different number of banks. This approach
requires additional resources for memory controller
(multiple control logic modules) and DRAM chip (address
decoders and row buffers etc.), but it does not need to
change the DRAM specification.

Multi-Memory-Controller: We increase the number of
on-chip memory controllers. This approach inherently
increases the number of banks and should have the same

effect as multi-bank. However, it consumes on-chip
resources, especially the pin count.

Virtual-Channel-Memory (VCM): VCM represents a
method of providing additional cache on the DRAM chip. In
each rank, there are 16~32 channel buffers, each holding one
segment of row buffer. The DRAM specification is slightly
changed to support operating channel buffers, but VCM
memory controller is compatible to traditional DRAM.
Furthermore, VCM is a mature technology and ever
possessed a certain market around 2000.

Since VCM requires changes to DRAM specification,
we would like to describe it in details. VCM was first
introduced by NEC corporation in late 1990s [22]. It was
intended for a wide range of applications such as multimedia
and web servers. VCM puts a set of fast channel buffers
within memory chips and the number of channel buffers is
usually 4 or 8 times more than that of banks. Hence, VCM is
expected to provide faster access as well as more
concurrency.

VCM Organization: Figure 4 illustrates VCM’s
conceptual organization. Channel buffers are introduced as
an extra storage layer between memory controller and
DRAM banks. Two commands, i.e., PREFETCH (reading
segment data from row buffer to channel) and RESTORE
(writing segment data from channel to row buffer), are also
introduced in order to operate channels. As shown in the
figure, each row buffer is divided into 4-16 segments which
are transfer units between banks and channels. Memory
operations (commands) are divided into foreground
operations for channels (READ and WRITE commands) and
background operations for DRAM banks (ACTIVE,
PRECHARGE, PREFETCH and RESTORE commands).
NEC’s VCM is implemented to be compatible to the
industry standard SDRAM and uses the same command
protocol and interface as SDRAM/DRAM. Because
channels and DRAM banks are independent, foreground
operations and background operations can also be executed
independently. To further enhance VCM’s performance,
channels and the row buffers (banks) of the original VCM
are fully associative, which means that any channels can
store segment data from any row buffers (banks) and can be
written back to any row buffers (banks). Because channels
and DRAM banks are independent, memory controller can
schedule the foreground and background operations
concurrently, which allows the memory controller to exploit
as more MLP as possible.

0
1
2
3
4

N
or

m
al

iz
ed

 R
at

e RBHR BLP NIPC

1209

Row Buffer

Bank 0

Row

Column

Virtual Channels

Memory Controller

WriteReadForeground
Operations

Row Buffer

Bank 7

Row

Column

Background
Operations RestorePrefetch

One Segment:
1/n Row

...

Core 0
 Memory Requests

Core C-1
 Memory Requests

...

Figure 4. Conceptual Organization of VCM.

VCM for Multicore Architecture: We have
implemented VCM on our simulation platform. Figure 5
illustrates the design of VCM memory controller which is
responsible for scheduling memory requests from different
cores. There are three main distinctions between a VCM
memory controller and a traditional DRAM controller:

1) The channels are decoupled with bank, which
means that the channels can hold any segment data
from any bank/row. Thus each channel needs a tag
register to record memory address of the segment it
holds (i.e., <bank, row, segment>).

2) There are channel-level schedulers to schedule
VCM commands to channels. Those schedulers
need to keep track of their corresponding channels’
state to determine which command should be
issued.

3) There are bank-level schedulers for keeping track
of the state of the banks. The bank state information
and the channel state information are used to select
requests in request buffer.

NEC’s VCM usually has 8 to 32 channels. In fact,
channel buffers operate like a fully associative cache with
write through policy. Take reading data from a memory
bank as an example. Memory controller first looks up
registers to determine whether the required data is already in
a channel; if the read request misses in all channels, the
bank-level controller will issue an Active command to the
corresponding bank to fetch a row into the row buffer; after
2 (tPAD) cycles, a Prefetch command issued by a channel-
level scheduler follows to transfer one segment of the row
buffer to a channel which memory controller selects for
replacing; then 2 (tPCD) cycles later, the Read command
can be issued to the new refilled channel and after another 2
cycles (read latency) the data can be present in the data bus;
meanwhile, if using a close-page policy, a Precharge
command is issued to the bank to close the row; for an 8
burst length, the data transfer requires 4 cycles with double
data rate (DDR). As for writing data into a channel buffer,
Write, Restore and Active commands are issued
consecutively , and finally a Precharge command is used to

Bank
Scheduler

Crossbar

Core 0
Requests

Core C-1
Requests...

VC 0
Request
Buffer

VC V-1
Request
Buffer

VC V
Request
Buffer

Memory Request

Buffer

VC 0
Scheduler

VC V-1
Scheduler

Per-Channel

Scheduler

DRAM Channel Scheduler

DRAM Address/Command Buses(off-chip)

On-chip
Data Bus

Cache
Line
Read

Buffer

Cache
Line
Write
Buffer

Off-chip
Data Bus

Figure 5. VCM Memory Controller.

close the corresponding row. According to the datasheet [22],
we conclude that the original NEC’s VCMs adopt write-
through policy for channel buffers and close-page policy for
row buffer.

For more details of VCM, please refer to [26]3.

IV. EXPERIMENTAL SETUP

A. Evaluation Tools
We implement and evaluate the four approaches using an

in house cycle-accurate x86 CMP simulator. The functional
front-end is based on Pin [15] and iDNA [4]. We model the
memory system in detail, faithfully capturing bandwidth
limitations, contention, and enforcing bank/channel/bus
conflicts. Table I shows the major DRAM and processor
parameters. We model a modest multi-core (16 core) system
with one channel as baseline to produce heavy access
pressure on memory system to simulate the environment in
future multi-core/many-core system, meanwhile limiting
simulation time. The VCM was implemented in the memory
system, the baseline configuration is 32 Virtual Channels
within each DRAM chip. We use CACTI 6.5[1] to evaluate
area and power parameters.

B. Workloads
We use the SPEC CPU2006 benchmarks for evaluation.

We compile each benchmark using gcc 4.1.2 with -O3
optimizations and choose a representative simulation phase
using PinPoints [15]. We select memory intensive
benchmarks and memory non-intensive benchmarks from
SPEC CPU2006. Table II and Table III list their
characteristics (including IPC, MPKI, RBHR and BLP). We
run multiple programs on multicore system where each core
is dedicated to one program. We use homogeneous
workloads (multiple instances of the same program) to
evaluate performance and heterogeneous workloads (the
combinations of different programs) to evaluate QoS. All
programs are run with their reference (maximum size) input

 3 Since the original VCM datasheet of NEC [22] has been
outdated on the Internet.

1210

TABLE I. SIMULATED TARGET SYSTEM CONFIGURATION

Processor Pipeline 3 GHz processor, 128-entry instruction window (64-entry issue queue, 64-entry store queue), 12-stage pipeline
Fetch/Exec/Commit width 3 instructions per cycle in each core; only 1 can be a memory operation

L1 Caches 32 K-byte per-core, 4-way set associative, 64-byte block size, 2-cycle latency
L2 Caches 512 K-byte per core, 8-way set associative, 64-byte block size, 12-cycle latency, 32 MSHRs

Baseline DRAM controller
(on-chip)

FR-FCFS, close-page row buffer policy for VCM, open-page for other approaches; 128-entry request buffer, 64-
entry write data buffer, reads prioritized over writes, XOR-based address-to-bank mapping [33].

DRAM chip parameters Micron DDR3-1600 timing parameters , tCL=15ns, tRCD=15ns, tRP =15ns; 8 banks, 8K-byte row-buffer per bank

DIMM configuration Single-rank, 8 DRAM chips put together on a DIMM (dual in-line memory module) to provide a 64-bit wide channel
to DRAM

Round-trip L2 miss latency
with VCM

For a 64-byte cache line, row-buffer hit: 200 cycles, closed: 300 cycles, conflict: 400 cycles.
VCM additional Latency: Active-to-Prefetch Latency (100 cycles), Prefetch-to-Read/Write Latency (80 cycles),
Read Latency (200 cycles)

VCM parameters 1K-byte per segment, 8 segments per row-buffer, 8 requests per VC request buffer and 128 requests for the Recycle
Request Buffer

TABLE II. MEMORY INTENSIVE BENCHMARK CHARACTERISTICS

Benchmark Type IPC MPKI RBHR BLP
401.bzip2 INT 1.07 3.42 80.93 1.58
429.mcf INT 0.18 71.86 10.82 5.05
433.milc FP 0.27 20.59 86.54 1.29
436.cactusADM FP 0.45 6.31 19.70 1.32
437.leslie3d FP 0.35 17.10 71.04 1.71
450.soplex FP 0.19 38.99 88.27 1.71
456.hmmer INT 0.77 5.19 49.76 1.29
459.GemsFDTD FP 2.41 3.78 52.70 2.87
462.libquantum INT 1.25 6.90 91.50 1.03
464.h264ref INT 3.28 2.39 85.20 1.12
470.lbm FP 0.56 35.26 85.85 3.31
471.omnetpp INT 2.10 5.85 62.70 3.56
473.astar INT 1.18 6.39 51.80 1.47
481.wrf FP 3.07 1.98 71.39 1.03
482.sphinx3 FP 2.98 2.47 81.97 1.86
483.xalancbmk INT 2.22 3.70 68.68 2.05

sets. For multi-program workloads: we fast forward 20
million instructions for each process to warm up the
simulator, and then execute another 100 million instructions
for each core, and then collect simulation data such as IPC,
memory access latency and power consumption.

C. Metrics
We evaluate the benchmark by four main metrics, i.e.,

performance, QoS, power consumption and area cost. For
individual benchmark, we evaluate performance in term of
IPC. For whole system, we use the Unfairness metric to
estimate QoS and evaluate performance in term of
System_Throughput [12][29]:

Slowdown� =
����

��	
��

����
	��� , Unfairness = ���{����������}

���{����������}

System_Throughput =� {���������}
�

D. Experimental schemes
We adopt three experimental schemes: 1) we use

homogeneous workloads to evaluate system performance in
term of average IPC. 2) We use heterogeneous workloads to
evaluate QoS effect of the approaches in term of Unfairness
and System_Throughput. 3) We demonstrate the area cost
and power consumption by the CACTI tool.

TABLE III. MEMORY NON-INTENSIVE BENCHMARK CHARACTERISTICS

Benchmark Type IPC MPKI RBHR BLP
400.perlbench INT 2.05 0.04 68.54 1.33
403.gcc INT 1.73 0.22 62.12 1.65
435.gromacs FP 1.55 0.95 80.85 1.43
444.namd FP 2.44 0.05 91.51 1.05
445.gobmk INT 1.82 0.60 58.92 1.35
447.dealII FP 1.85 0.08 83.85 1.17
453.povray FP 1.88 0.00 88.54 1.58
454.calculix FP 1.73 0.01 84.70 1.17
458.sjeng INT 1.94 0.43 24.20 1.54
465.tonto FP 2.10 0.16 10.85 1.73

Here, IPC: Instruction per Cycle, MPKI: L2 Cache

Misses per 1000 Instructions, RBHR: Row-Buffer Hit Rate,
BLP: Bank Level Parallelism.

V. EXPERIMENTAL RESULTS

A. Performance
Figure 6 shows the normalized IPC speedup of memory-

intensive homogenous workloads running on a baseline
multicore system which has 16-core and 8 memory banks.
We apply the four approaches to the baseline system and
measure their IPC speedups.

For the multi-row-buffer approach, even using eight 8-
KB row buffers in one bank, the GMEAN performance
improvement is only 1.22X. As mentioned above, this
approach can improve RBHR but is still limited to bank-
level parallelism. Figure 7 further illustrates the speedups on
systems with different number of cores. For the 1-core
system, incrementing row-buffer can achieve almost the
same improvement as the other approaches. However, as the
number of cores increases, its performance scalability is
very poor, compared with other approaches. The multi-bank
and the multi-memory-controller approaches exhibit good
IPC speedups. According to Figure 6, 4 memory controllers
exhibit the best improvement, by 2.44X while 2 memory
controllers setup improves performance by 1.63X. The 32-
bank scheme and the 16-bank scheme exhibit performance
improvement by 2.44X and 1.63X respectively, and 32-bank
can achieve nearly the same improvement as four memory
controllers.

1211

Figure 6. The Normalized IPC Speedup on 16-core system, the baseline is 8-bank with 1-row buffer. Here, RB: Row Buffer, MC: Memory Controller.

Figure 7. Performance scalability against the increasing core numbers, in terms of Normalized IPC.

Figure 8. The Normalized BLP on a 16-core system, the baseline is 8-Bank.

On average, VCM with 32 1KB-channel buffers
achieves 2.21X performance speedup and also exhibits good
scalability, from 1.24X for single-core to 2.21X for 16-core.
In fact, an interesting phenomenon is that its RBHR 4 is
much less than the multi-row-buffer approach. However,
according to Figure 8, the MLP (in term of BLP here)
improves significantly. Even on a 16-core system with only
8 banks, the VCM with 32-channel can exploit normalized
MLP nearly 2.09x compared with 8-Bank. The VCM’s
capability of exploiting MLP benefits from its organization
that channels and DRAM banks are independent so that
memory controller can schedule the bank operations and the
channel operations concurrently. This phenomenon is strong
evidence that the performance on multicore architecture is
more dependent of MLP than RBHR. We further investigate
how the latter three approaches exploit more MLP. Figure 9
illustrates the average access latency of memory requests.
The latency is divided into two parts: DRAM accessing
latency and queuing latency. In fact, the DRAM accessing
latencies are almost the same for all approaches, however,
the queuing delay at memory controller side reduces
significantly for the VCM approach and the multi-bank (the
same as multi-MC) approach. Take VCM as an example, for

4 For VCM, RBHR means the virtual channel hit rate rather
than the traditional row buffer hit rate for banks.

each individual request, although the latency of background
operations (i.e., accessing DRAM latency) increases slightly
by 7.3%, the queuing latency substantially decreases, from
8.75x (of baseline) to 3.50x for 32-channel VCM.

B. QoS
The memory QoS problem means that unfair servicing of

different cores’ requests by the memory controller can lead
to application/core starvation [21][23] and even denial of
memory service for some cores [19]. For example, Mutlu et
al. [21] showed that the slowdowns for some memory non-
intensive applications can increase from 7.74X for 4-core
system to 11.35X for 8-core system whereas the memory-
intensive application experienced the slowdowns of only
1.04X and 1.09X respectively. Some other works [18-20, 25]
also demonstrated the similar unfair phenomenon. Recent
studies on memory controller optimization, such as PAR-BS
[20] and ATLAS [13], have shown their effectiveness in
improving QoS.

According to our above analysis, VCM is better than the
other three approaches for performance. Thus in this section,
we mainly evaluate QoS for VCM. Moreover, we have
integrated the PAR-BS and ATLAS scheme into VCM. We
use the following metrics to evaluate QoS: Unfairness and
System_Throughput.

0
1
2
3
4

N
or

m
al

iz
ed

 IP
C

Sp

ee
du

p
1-RB 2-RB 4-RB 8-RB 16-Bank 2-MC 32-Bank 4-MC 32-VC

0
0.5

1
1.5

2
2.5

1-Core 2-Core 4-Core 8-Core 16-Core

N
or

m
al

iz
ed

 IP
C

Sp

ee
du

p

1-RB 2-RB 4-RB 8-RB 16-Bank 2-MC 32-Bank 4-MC 32-VC

0
1
2
3
4

N
or

m
al

iz
ed

 B
L

P 8-Bank 16-Bank 32-Bank 32-VC

1212

Figure 9. Breakdown of memory access latency on a 16-core system, where the baseline is Accessing DRAM Latency of 1-Row.

 (a)Memory-intensive workloads (b)Mixed workloads

Figure 10. The Unfairness and System Throughput on 16-core system with and without VCM: (a) memory-intensive worklaods; (b)mixed memory-intensive
and memory-non-intensive workloads.

Figure 10(a) shows the average Unfairness and
System_Throughput of 16 memory-intensive workloads on a
16-core 8-bank system with and without VCM. Each
workload includes 16 memory-intensive programs which are
generated by randomly selected from Table II. We can see
that without VCM, the two state of the art scheduling
algorithm could efficiently improve system Qos by
reducing unfairness from 16.74 to 7.53 (reduce 55.02%) for
PARBS and 7.36 (reduce 56.03%) for ATLAS. Meanwhile
they can improve System_Throught by 10.13% for PARBS
(4.13 vs. 3.75) and 13.33% for ATLAS (4.25 vs. 3.75). On
the other hand, VCM exhibits good performance both in
QoS and System_Throughput even with simple memory
schedule algorithm (FR-FCFS). It can reduce unfairness by
64.16% (6.00 vs. 16.74) and significantly improve system
throughput by 90.67% (7.15 vs. 3.75), both of these are even
better than the two state of the art memory scheduling
algorithm without VCM. There are two reasons: 1) the fewer
memory requests stay in queue, the less is the probability of
unfairness. As shown in Figure 9, VCM can significantly
reduce queuing latency, so it can also substantially
eliminates unfairness; 2) Channels are independent of banks
and they can operate simultaneously, hence more memory
requests can be issued without the limitation of bank count.
Therefore, those requests with low priority have more
chances to be scheduled. Although PAR-BS and ATLAS
algorithms can largely reduce unfairness by ranking threads’
requests, they still subject to the bank-level parallelism.
When applying PAR-BS and ATLAS to VCM, the
Unfairness metrics change slightly to 6.49 (+8.17%) and
5.99 (-0.17%) respectively, and that is nearly the same for
System_Throughput by 6.01% and 0.14%. Thus we can
conclude that VCM could perform well with simple

FRFCFS memory scheduling algorithm for memory-
intensive workloads, further, figure 10(b) could also prove
this view for mixed memory-intensive and memory-non-
intensive workloads.

Figure 10(b) shows that for mixed memory-intensive and
memory-non-intensive workloads, without VCM the
PARBS and ATLAS reduced unfairness quite slightly (3.24%
and 3.13%), but the VCM with FRFCFS could also
effectively reduce unfairness by 47.18% (29.49 vs. 55.83)
and improve system throughput by 66.19% (6.27 vs. 10.42).
These results show that VCM could be suitable for various
workloads in multi-core/many-core architecture.

C. Area and Power Cost
We use CACTI to estimate area and power cost for the

four approaches. Table IV illustrates the area and energy
parameters for 2GB DRAM with 32nm technology. Given a
fixed DRAM size, the area is dependent on the layout of
those components. For multi-bank, the area increases
significantly mainly because of the area of large row buffers.
It should be noted that when the DRAM chip is divided into
more banks, the DRAM arrays become smaller so that the
CACTI can figure out a smaller area (e.g., area of 128-bank
is smaller than area of 64-bank). The multi-row-buffer
approach and the multi-memory-controller approach also
suffer from the area penalty. In particular, multi-memory-
controller has the biggest area cost because adding one
memory controller means adding a set of banks as well as
consuming chip pins which have been scarce resources in
multicore systems. However, VCM almost has no area cost,
increasing area by only 0.5% for 32 1KB-channels and 7.7%
for 128 channels.

0
2.5

5
7.5
10

12.5

1-
R

ow
2-

R
ow

4-
R

ow
8-

R
ow

32
-V

C
64

-V
C

12
8-

V
C

16
-B

an
k

32
-B

an
k

1-
R

ow
2-

R
ow

4-
R

ow
8-

R
ow

32
-V

C
64

-V
C

12
8-

V
C

16
-B

an
k

32
-B

an
k

1-
R

ow
2-

R
ow

4-
R

ow
8-

R
ow

32
-V

C
64

-V
C

12
8-

V
C

16
-B

an
k

32
-B

an
k

1-
R

ow
2-

R
ow

4-
R

ow
8-

R
ow

32
-V

C
64

-V
C

12
8-

V
C

16
-B

an
k

32
-B

an
k

1-
R

ow
2-

R
ow

4-
R

ow
8-

R
ow

32
-V

C
64

-V
C

12
8-

V
C

16
-B

an
k

32
-B

an
kN
or

m
al

iz
ed

 L
at

en
cy

 Accessing DRAM Latency Queuing Latency
401.bzip2 450.soplex 462.libquantum 464.h264ref GMEAN

0

5

10

15

20

Unfairness
0

2

4

6

8

System_Throughput
0

10
20
30
40
50
60

Unfairness
0

5

10

15

System_Throughput

Bank8_FRFCFS
Bank8_PARBS
Bank8_ATLAS
VC32_FRFCFS
VC32_PARBS
VC32_ATLAS

1213

TABLE IV. AREA AND ENERGY PARAMETERS

Here, DRPA: Dynamic Read per Access (nJ); LP: Leakage Power (mW); AE: Active Energy (nJ).

We evaluate power consumption in both high
performance (HP) mode and low power standby (LPS) mode.
For individual DRAM operations, experimental results show
that there are no significant differences among different
configurations. For 32-channel VCM in HP mode, each read
operation consumes about 2.19 nJ, increasing slightly by
about 3.6% compared to the baseline 8-bank DRAM.

VI. RELATED WORKS
Performance Issue: Rixner et al. proposed FR-FCFS

[27] scheduling algorithm which could improve memory
bandwidth by 40%~93% for streaming applications. McKee
et al. [16] showed that dynamically reordering memory
requests can increase the row buffer hit rate for scientific
and multimedia applications. Hur et al. [9] proposed the
adaptive history-based (AHB) scheduler which improves
performance by 7.6%~15.6%. There is still a lot of work [28,
37] focusing on reordering memory requests. However, most
of these studies are aim to take full advantage of the row
buffer within each bank, still being limited to bank-level
parallelism. Agrawal et al. [2] proposed virtually pipelined
memory (VPM) which provided a deeper pipeline for
handling memory requests. Although VPM might increase
access individual request latency, it is able to improve
effective memory bandwidth. This is because that pipelining
allows more on-the-fly memory requests. Nevertheless,
these schemes do not consider enhancing MLP.

VCM represents a number of approaches which add
additional buffer into DRAM chip to exploit MLP. The
similar idea was first proposed by Alexander and Kedem [3].
They proposed to integrate some small buffers in DRAM
chip as prediction table for a DRAM prefetching scheme.
Zhao et al. [34] implemented an additional off chip SRAM
Cache to exploit locality for larger workload with higher
bandwidth. Jiang et al.[11] further improved the DRAM
Cache with some effective filters to cache only hot pages.

Several studies focus on changing DRAM’s organization
in order to improve performance as well as reduce power.
Zheng et al. proposed Mini-rank [35] and decoupled-DIMM
[36] to address DRAM power issue. Yamauchi et al. [32]
present hierarchical multi-bank DRAM composed of 8 sub-

banks, improving performance about 65%. More recently,
Udipi et al. [31] argued that traditional DRAM system has
already not suitable for multicore system because of
overfetch problem which wastes significant energy. They
proposed two main aggressive schemes including Selective
Bit-line Activation (SBA) and Single Subarry Access (SSA)
which are able to reduce energy by 5X~6X and
 performance by 54% due to reduced queuing delays.

QoS Issue: Both of Rafique et al. [25] and Nesbit et al.
[23] studied QoS based on fair queuing mechanism. Mutlu
et al. proposed STFM [21] and PAR-BS [20] to solve
unfairness problems for multicore system. Furthermore, Kim
et al. [13] proposed ATLAS algorithm for multiple memory
controllers system which could improve system throughput
by 8.4%~10.8%. Eiman et al. proposed FST algorithm [6]
which throttles down cores causing unfairness by limiting
the number of their available MSHRs.

VII. CONCLUSIONS
In this paper, we have found that MLP has a stronger

correlation with the performance of DRAM system on
multi-core/many-core architecture than RBHR which is
considered as the only inherent metric to measure the
performance of DRAM system in the past decade. In order
to leverage the unexploited MLP existing in multi-
core/many-core system, we have selected and evaluated four
representative approaches by measuring performance, QoS,
power overhead and area cost. According to the
experimental results, we have found that the obsolete VCM
exhibits better than the other three approaches. We argue
that memory chip vendors could reconsider the VCM
technology for multi-core/many-core architecture.

ACKNOWLEDGMENT
The authors thank the anonymous reviewers for their

constructive suggestions. This research is supported by the
National Natural Science Foundation of China (NSFC)
under grant numbers 60925009, 60921002, 60903046,
61272134 61033009 and the National Basic Research
Program of China (973 Program) under a grant number
2011CB302502.

con
-fig

Area
(mm2

)

High
Performance

Mode

Low Power
Standby Mode Con

-fig
Area

(mm2)

High Performance
Mode

Low Power
Standby Mode

DRPA LP AE DRPA LP AE DRPA LP AE DRPA LP AE
Multiple Banks Multiple Row Buffers

8 617.4 2.13 3660.1 0.13 3.39 30.87 0.20 1 617.4 2.13 3660.1 0.13 3.39 30.87 0.20
16 928.4 2.43 4832.3 0.15 3.54 31.35 0.22 2 662.2 2.19 3798.5 0.14 3.49 31.52 0.21
32 718.4 2.27 4330.6 0.14 3.62 34.86 0.22 4 736.6 2.29 3812.5 0.14 3.64 31.60 0.22
64 1093.6 2.59 6271.7 0.16 3.70 29.49 0.22 8 886.7 2.48 3841.3 0.15 3.96 31.77 0.23
128 895.4 2.50 6363.4 0.15 4.00 47.00 0.23 16 1189.7 2.86 3931.0 0.17 4.43 21.36 0.26

Multiple Memory Controllers Virtual Channel Memory
1 617.4 2.13 3660.1 0.13 3.39 30.87 0.20 16 618.2 2.19 3660.9 0.17 3.45 30.88 0.25
2 1234.7 4.26 7320.1 0.26 6.78 61.74 0.40 32 620.2 2.21 3661.2 0.18 3.47 30.88 0.26
4 2469.5 8.52 14640. 0.52 13.56 123.4 0.80 64 629.2 2.27 3663.2 0.21 3.50 30.89 0.28

1214

REFERENCES
[1] CACTI: An Integrated Cache and Memory Access Time, Cycle Time,

Area, Leakage, and Dynamic Power Model.
http://www.hpl.hp.com/research/cacti/.

[2] B. Agrawal and T. Sherwood, Virtually Pipelined Network Memory,
in Proceedings of the 39th Annual IEEE/ACM International
Symposium on Microarchitecture, 2006.

[3] T. Alexander and G. Kedem, Distributed Prefetch-buffer/Cache
Design for High Performance Memory Systems, in Proceedings of
the 2nd IEEE Symposium on High-Performance Computer
Architecture, 1996.

[4] S. Bhansali, W.-K. Chen, S. D. Jong, A. Edwards, R. Murray, M.
Drinic, D. Mihocka, and J. Chau, Framework for instruction-level
tracing and analysis of program executions, in Proceedings of the 2nd
international conference on Virtual execution environments, 2006.

[5] Y. Chou, B. Fahs, and S. Abraham, Microarchitecture Optimizations
for Exploiting Memory-Level Parallelism, in Proceedings of the 31st
annual international symposium on Computer architecture, 2004.

[6] E. Ebrahimi, L. Chang Joo, M. Onur, and N. P. Yale, Fairness via
source throttling: a configurable and high-performance fairness
substrate for multi-core memory systems, in Proceedings of the
fifteenth Architectural support for programming languages and
operating systems (ASPLOS), 2010.

[7] S. Everman and L. Eeckhout, A Memory-Level Parallelism Aware
Fetch Policy for SMT Processors, in Proceedings of the 2007 IEEE
13th International Symposium on High Performance Computer
Architecture, 2007.

[8] A. Glew. "MLP yes! ILP no!" in ASPLOS Wild and Crazy Idea
Session. 1998.

[9] I. Hur and C. Lin, Memory scheduling for modern microprocessors.
ACM Trans. Comput. Syst., 2007. 25(4): p. 10.

[10] Jedec, DDR3 SDRAM STANDARD, 2010.
[11] X. Jiang, N. Madan, L. Zhao, M. Upton, R. Iyer, S. Makineni, D.

Newell, Y. Solihin, and R. Balasubramonian, CHOP: Integrating
DRAM Caches for CMP Server Platforms. IEEE Micro, 2010. 31(1):
p. 99-108.

[12] K. Luo, J. Gummaraju, and M. Franklin. Balancing throughput and
fairness in SMT processors. in IEEE International Symposium on
Performance Analysis of Systems and Software. 2001.

[13] Y. Kim, D. Han, O. Mutlu, and M. Harchol-Balter. ATLAS: A
Scalable and High-Performance Scheduling Algorithm for Multiple
Memory Controllers. in Proceedings of the 16th International
Symposium on High-Performance Computer Architecture (HPCA).
2010.

[14] C. J. Lee, V. Narasiman, O. Mutlu, and Y. N. Patt, Improving
memory bank-level parallelism in the presence of prefetching, in
Proceedings of the 42nd Annual IEEE/ACM International
Symposium on Microarchitecture, 2009.

[15] C.-K. Luk, R. Cohn, R. Muth, H. Patil, A. Klauser, G. Lowney, S.
Wallace, V. J. Reddi, and K. Hazelwood, Pin: building customized
program analysis tools with dynamic instrumentation, in Proceedings
of the 2005 ACM SIGPLAN conference on Programming language
design and implementation, 2005.

[16] S. A. Mckee, W. A. Wulf, J. H. Aylor, M. H. Salinas, R. H. Klenke,
S. I. Hong, and D. A. B. Weikle, Dynamic Access Ordering for
Streamed Computations. IEEE Trans. Comput., 2000. 49(11): p.
1255-1271.

[17] Micron, 1Gb DDR2 SDRAM Component: MT47H128M8HQ-25.
http://download.micron.com/pdf/datasheets/dram/ddr2/1GbDDR2.pd
f, May 2007.

[18] T. Moscibroda and O. Mutlu, Distributed order scheduling and its
application to multi-core dram controllers, in Proceedings of the
twenty-seventh ACM symposium on Principles of distributed
computing, 2008.

[19] T. Moscibroda and O. Mutlu, Memory performance attacks: denial of
memory service in multi-core systems, in Proceedings of 16th

USENIX Security Symposium on USENIX Security Symposium,
2007.

[20] O. Mutlu and T. Moscibroda, Parallelism-Aware Batch Scheduling:
Enhancing both Performance and Fairness of Shared DRAM Systems,
in Proceedings of the 35th Annual International Symposium on
Computer Architecture, 2008.

[21] O. Mutlu and T. Moscibroda, Stall-Time Fair Memory Access
Scheduling for Chip Multiprocessors, in Proceedings of the 40th
Annual IEEE/ACM International Symposium on Microarchitecture,
2007.

[22] Nec, 64M-bit Virtual Channel SDRAM data sheet, 1998.
[23] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith, Fair Queuing

Memory Systems, in Proceedings of the 39th Annual IEEE/ACM
International Symposium on Microarchitecture, 2006.

[24] M. Qureshi, D. Lynch, O. Mutlu, and Y. Patt, A Case for MLP-
Aware Cache Replacement, in Proceedings of the 33rd annual
international symposium on Computer Architecture, 2006.

[25] N. Rafique, W.-T. Lim, and M. Thottethodi, Effective Management
of DRAM Bandwidth in Multicore Processors, in Proceedings of the
16th International Conference on Parallel Architecture and
Compilation Techniques (PACT), 2007.

[26] S. Rixner, Memory Controller Optimizations for Web Servers, in
Proceedings of the 37th annual IEEE/ACM International Symposium
on Microarchitecture, 2004.

[27] S. Rixner, W. J. Dally, U. J. Kapasi, P. Mattson, and J. D. Owens.
Memory Access Scheduling. in Proceedings of the 27th annual
international symposium on Computer architecture. 2000.

[28] J. Shao and B. T. Davis, A Burst Scheduling Access Reordering
Mechanism, in Proceedings of the 2007 IEEE 13th International
Symposium on High Performance Computer Architecture, 2007.

[29] A. Snavely and D. M. Tullsen, Symbiotic jobscheduling for a
simultaneous multithreaded processor, in Proceedings of the ninth
international conference on Architectural support for programming
languages and operating systems 2000.

[30] K. Sudan, N. Chatterjee, D. Nellans, M. Awasthi, R.
Balasubramonian, and A. Davis, Micro-pages: increasing DRAM
efficiency with locality-aware data placement, in Proceedings of the
fifteenth Architectural support for programming languages and
operating systems (ASPLOS), 2010.

[31] A. N. Udipi, N. Muralimanohar, N. Chatterjee, R. Balasubramonian,
A. Davis, and N. P. Jouppi, Rethinking DRAM design and
organization for energy-constrained multi-cores, in Proceedings of
the 37th annual international symposium on Computer architecture,
2010.

[32] T. Yamauchi, L. Hammond, and K. Olukotun. The Hierarchical
Multi-Bank DRAM: A High-Performance Architecture for Memory
Integrated with Processors. in Proceedings of the 19th Conference on
Advanced Research in VLSI. 1997.

[33] Z. Zhang, Z. Zhu, and X. Zhang, A permutation-based page
interleaving scheme to reduce row-buffer conflicts and exploit data
locality, in Proceedings of the 33rd annual ACM/IEEE international
symposium on Microarchitecture, 2000.

[34] L. Zhao, R. Iyer, R. Illikkal, and D. Newell. Exploring DRAM cache
architectures for CMP server platforms, Computer Design. in 25th
International Conference on Computer Design (ICCD). 2007.

[35] H. Zheng, J. Lin, Z. Zhang, E. Gorbatov, H. David, and Z. Zhu,
Mini-rank: Adaptive DRAM architecture for improving memory
power efficiency, in Proceedings of the 41st annual IEEE/ACM
International Symposium on Microarchitecture, 2008.

[36] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu, Decoupled DIMM: building
high-bandwidth memory system using low-speed DRAM devices, in
Proceedings of the 36th annual international symposium on
Computer architecture, 2009.

[37] H. Zheng, J. Lin, Z. Zhang, and Z. Zhu, Memory Access Scheduling
Schemes for Systems with Multi-Core Processors, in 37th
International Conference on Parallel Processing (ICPP), 2008.

1215

