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Abstract—Superpage and page coloring are two important
practical techniques to improve the performance of Translation
Lookaside Buffers (TLBs) and shared Last Level Cache (LLC)
respectively. However, there exists a gap between these two tech-
niques in current hardware-architecture design, resulting in the
contradiction in adopting these two optimizations simultaneously:
a superpage requires hundreds of contiguous (e.g. a power of
two) base pages in both virtual and physical memory, which
would compulsorily occupy all available page colors (or cache
sets), thus making page coloring failed to work. This is because
most contemporary architecture adopts the design with cache set
indexes placed in the least significant part of block address.

In this paper, we propose a lightweight approach named
Scattered Superpage to bridge this gap. Scattered Superpage
decouples a superpage from the limitation of occupying multiple
contiguous physical base pages. A superpage is still contiguous
in virtual memory, but it is scattered mapping into multiple
physical superpages, and it just occupies specified partial page
colors in each physical superpage, thus it allows us to configure
page color for each superpage. The huge TLB is slightly modified
to store page color configuration for each superpage and to
calculate target physical address based on this configuration when
doing address translation. The experimental results show that the
Scattered Superpage can improve system performance by 20.51%
and reduce unfairness by 27.77% in our 4-core simulation system
(with multi-program memory-intensive workloads). It achieves
this by reducing last level cache miss by 17.05% and reducing
TLB miss by 86.02% simultaneously.

Keywords—Scattered Superpage, Page Coloring, TLB, Last
Level Cache

I. INTRODUCTION

The DRAM memory system is considered as the main
bottleneck in chip multiprocessor (CMP) system [18, 27].
There are two main sources that would result in high overhead
DRAM accesses: 1) normal data access (e.g. load/store) miss
in last level cache (LLC); 2) page table walks due to translation
lookaside buffer (TLB) miss. The former contributes most
of DRAM references, and it is considered critical to system
performance, thus a large body of work has been contributed
to LLC optimization. Although the latter contributes rela-
tively smaller portion of DRAM references, it also becomes
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Fig. 1. Page coloring with normal page address [12] and with super page
address.

increasingly important to system performance. It has been
shown that TLB miss can have an impact on overall system
performance by 5% to 14% for nominally sized applications
[7] and even up to 50% for some larger applications [25]. Thus
to achieve better system performance in multi-core/many-core
system, it is necessary to take both shared LLC and TLB into
account. However, most of previous work focused on either
LLC optimization or TLB optimization, none of them took
both factors into consideration, which thus motivates this work.

Superpage (or huge page) and page coloring are two
important practical techniques to improve the performance
of Translation Lookaside Buffers (TLBs) and shared Last
Level Cache (LLC) respectively, and each of them has been
widely used in real systems in separate. However, in this
work, we will show that there exists a gap between superpage
and page coloring in current hardware-architecture design,
which would result in the contradiction in adopting both these
two optimizations. And the goal of this work is to bridge
the gap and to leverage both superpage and page coloring
optimizations.

The page coloring technique is a software approach for
shared cache partition, that is able to reduce cache contention
through isolated mapping between virtual pages and physical
pages among multiple concurrently executing applications (or
threads). It can be implemented in operating systems (OS) [21]
or in user level [12], and it has been proven to be practical
and effective in real systems [4, 12, 20, 21, 23, 31, 38, 40].
Figure 1(a) shows the principle of page coloring with normal
page (e.g. 4KB). A physical address is divided into page offset
(least significant bits) and page number (most significant bits).
The physical address is also used to index last level cache.
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And as a cache address, it contains three parts, from least to
most significant are: block offset, cache set index, and cache
tag. The common bits of page number and cache set index
is named as page color bits. By manipulating each process,
thread or object to use non-overlapping page colors, page
coloring technique can isolate cache sets and thus can reduce
cache contention among them. Actually it is especially useful
to protect some good-locality data from being interfered by
weak-locality data.

Superpage is used to reduce TLB miss overhead by in-
creasing TLB coverage [3, 13, 15, 29, 33, 36, 37]. A superpage
(or huge page)1 is a page that is sized and aligned as a power
of two multiple of system’s base page, which are required to
be contiguous both in virtual and physical memory. Hundreds
of contiguous memory pages (within a superpage) that can be
mapped with a single huge TLB entry, thus using superpage
can boost TLB coverage and reduce TLB miss overhead.
For example, x86 systems support 2MB and recently 1GB
superpages while adopt 4KB as base pages. The x86 processors
also provide separate huge TLB with each entry covering 512
base pages (for 2MB superpage). The performance of memory-
intensive applications can improve by about 10.45% in our
real experimental system with 2MB superpages (please refer
to section II for detail).

However, there exists a gap between page coloring and
superpage, as shown in Figure 1(b). It is noteworthy that page
coloring technique works only if there exists overlapping bits
between cache set index and page number. In contemporary
hardware-architecture design, the cache set index is placed in
the least significant part of block address (removing block
offset). When using superpage, the super page offset (also
in the least significant bits) would cover all the cache set
index bits. It means that no available page color bits could
be controlled by OS, and each superpage would compulsively
occupy all the available page colors. Take a typical processor
with 64B-block 8MB 16-way set-associative shared last level
cache as an example, there are total 8K sets, thus the cache set
index has 13 bits and resides in [6:18] bits of cache address
([0:5] are block offset bits), which is totally covered by the
2MB super page offset bits with [0:20]. Equipping with larger-
size LLC is a straightforward way to make some page color
bits available along with superpage (e.g. a 16-way 64 MB LLC
has only 1 available page color bit), however increasing LLC
size would introduce significant area, cost and energy overhead
to processer.

In this work, we propose a new lightweight approach
named Scattered Superpage to bridge the gap between su-
perpage and page coloring. Scattered superpage decouples
superpage from the limitation of using multiple contiguous
physical base pages that would probably occupy all page
colors. Instead, a virtual superpage (which is still contiguous
in virtual address) is scattered mapping into multiple physical
superpages with using specified (or controlled) partial page
colors in each physical superpage. Scattered superpage allows
software (OS or applications) to assign non-overlapping page
colors to superpages from different processes or threads, which
could effectively reduce last level cache contention among
superpages. Thus it enables us to leverage both superpage

1In this paper, we use the term superpage and huge page interchangeably,
and we use huge TLB for address translation of huge page.

and page coloring optimizations to improve both TLB and
LLC performance. To implement scattered superpage, the huge
TLB needs to be slightly modified to maintain page color
configuration for each superpage, and this configuration is
used to calculate target physical address when doing address
translation (for scattered superpage) in huge TLB.

Overall, we have made the following contributions:

• We identity the gap between superpage and page color-
ing in current hardware-architecture design, which results in
the contradiction in adopting both these two optimizations.

• To bridge this gap, we propose a lightweight approach
named scattered superpage that enables us to optimize both
last level cache and TLB performance. A virtual superpage
is scattered mapping into multiple physical superpages with
each physical superpage using specified partial page colors.
The huge TLB needs to maintain page color configuration for
each superpage, and to calculate target physical address based
on this configuration. To the best of our knowledge, this is
the first work to leverage both superpage and page coloring
optimizations to improve both the performance of TLB and
shared LLC simultaneously.

• We implement scattered superpage in a cycle-accurate
multi-core simulator and evaluate it using multi-program
memory-intensive workloads on a 4-core system. Compared
to the baseline setup, scattered superpage can improve system
performance by 20.51% and reduce unfairness by 27.77%
due to the reduction of LLC miss (17.05%) and TLB miss
(86.02%).

The rest of the paper is organized as follows: Section
II introduces our motivation and Section III describes the
implementation of scattered superpage. We describe the ex-
perimental methodology in Section IV and demonstrate exper-
imental results and discussion in Section V. Related work and
conclusion are in Section VI and Section VII respectively.

II. MOTIVATION

To motivate our work, we first show the performance
improvement for memory-intensive applications with huge
TLB on a real system. The experimental system has an Intel
Xeon E5645 processor working at 2.40GHz, it has 2-level
data TLB for 4KB base page. The first level TLB (DTLB)
has a size of 64 and the second level TLB (STLB) has a
size of 512. Furthermore, it has a separate 32-entry huge
TLB for 2MB superpage, which could increase maximum TLB
coverage to 64MB address space. We run each application five
times with single instance that is bound to the same core. And
we use libhugetlbfs [1] to access to huge pages of memory for
applications.

Figure 2 shows the normalized performance speedup of
memory-intensive applications when using huge TLB. We can
see that, the average performance improves by about 10.45%.
Except 470.lbm (3.62%) and 403.gcc (3.67%), all the other
applications have improvements above 5%, and the maximum
improvement is about 36.23% for 429.mcf, this is because
429.mcf has a large working set of about 1.6GB with random
memory access pattern that results massive TLB misses for
4KB base page. And using superpage can effectively reduce
TLB miss overhead. Thus, we can conclude that superpage is
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Fig. 2. Normalized speedup of memory-intensive benchmarks with using
huge TLB (2MB superpage) on a real system.
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Fig. 3. Normalized speedup of memory-intensive benchmarks with different
page colors (or cache sets) in simulation, the baseline is using all page colors
(it is 64 in our simulation).

a practical and effective optimization, especially for memory-
intensive applications with large working set.

We then show that many of these memory-intensive ap-
plications could have a small performance degradation when
assigned with partial page colors, which could be used as
a proof for the efficiency of page coloring. We adopt a
Linux kernel that is modified to support page coloring in our
simulation system, and it is configured with a total of 64 page
colors (please refer to section IV for the detailed simulation
configuration).

Figure 3 shows the normalized performance speedup (in
IPC) of memory-intensive applications with different page col-
ors varied from 1 (whole) to 1/8. We can see that 5 of the appli-
cations (470.lbm, 433.milc, 436.cactusADM, 459.GemsFDTD,
429.mcf ) have performance degradation less than 2% even
with only 1/8 page colors, these applications are either CCF
(Core Cache Fitting: the working set size fits in the smaller
levels of the cache hierarchy) or LLCT (LLC Thrashing: the
working set size is greater than the available LLC) as defined
in [17]. Two applications (456.hmmer, 473.astar) are degraded
less than 2% with 1/4 page colors which could be classified
to LLCFR (LLC Friendly, benefit from the available shared
LLC) [17]. And the other 3 applications (403.gcc, 450.soplex,
471.omnetpp) need at least 1/2 page colors. These degradation
results could be used to guide number of colors assigned to
each application when adopting page coloring optimization.
Take workload1 shown in section IV for example, we could
assign 1/4 page colors for 456.hmmer, 1/2 for 433.gcc, 1/8
for 429.mcf and 1/8 for 470.lbm, and as shown in section V,
the performance improvement is about 15.63% for workload1
with page coloring.

III. SCATTERED SUPERPAGE

A. Design and Implementation

Without loss of generality and to simplify our description,
in the following subsection, we assume that each (2MB)
superpage contains all available page colors of the system
and each color appears exactly once in each superpage. The
principle and implementation could be easily extended for
other page color configurations.

Before describing scattered superpage, we firstly introduce
and define Color Region (CR). A Color Region consists of
a set of contiguous physical base pages, which means that it
contains multiple physical page colors. A color region is served
as a base configurable logic color for a superpage2. Thus, a
superpage is divided into multiple color regions. The number
of color regions in each superpage should be configured based
on the number of cores in the system, to insure each core
having enough available number of color regions. For example,
in our 4-core system, we divide each 2MB superpage into 8
configurable color regions.

In scattered superpage, a superpage is remain contiguous
in virtual memory and it provides the same access interface
for software, thus it doesn’t need any changes for software
to adopt scattered superpage. A virtual superpage is scattered
mapping into multiple physical superpages, and it is not
contiguous in physical memory any more. Actually it only uses
partial specified color regions in each physical superpage, and
multiple of these scattered (specified) color regions constitute
an integral physical superpage. Other unused color regions can
be used by other scattered superpages (with different color
region configuration). Since different scattered superpages
(from different processes or threads) can be configured to use
non-overlapping color regions, it can effectively reduce cache
contention among them. And each scattered superpage still
needs only one huge TLB entry for its address translation.

Before accessing scattered superpage, each superpage
needs to be configured to use which and how many color
regions. There are two parameters: CR Entry and CR Num,
which represents the start color region and the number of color
regions used in a physical superpage respectively. We limit the
CR Num to be a power of two (e.g. 1,2,4,8) and the CR Entry
to be aligned with CR Num. The CR Num determines how
many scattered physical superpages should be used, and it is
named as the Scattered Num of a scattered superpage:

Scattered Num = Total CR Num/CR Num (1)

Where Total CR Num represents the total number of con-
figurable color regions in each physical superpage, CR Num
represents the number of color regions used in each physi-
cal superpage, and Scattered Num represents the number of
scattered physical superpages used for a scattered superpage.

Figure 4 shows the virtual to physical address mapping
for a regular superpage and for a scattered superpage. For a
regular superpage as shown in Figure 4(a), a virtual superpage
is mapped into a physical superpage, and the superpage offset
is contiguous both in virtual and physical address space.

2Since each superpage contains hundreds of base pages, it is not necessary
to make each page configurable in individual.
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Fig. 4. The virtual to physical address mapping for regular superpage (a)
and for scattered superpage (b).

CR Configuration

Fig. 5. The huge TLB entry for scattered superpage.

Thus a regular superpage needs to occupy all the available 8
color regions. For a scattered superpage as shown in Figure
4(b), although it is still contiguous in virtual superpage, it
is scattered mapping into multiple physical superpages with
using specified color regions in each physical superpage. In
this example, it has total 8 color regions in each superpage,
and the scattered superpage is configured with CR Entry=4
and CR Num=4, then the Scattered num of it is 2 (8/4), which
means that it is scattered mapping into 2 physical superpages,
and in each physical superpage, it uses the entry color region
of 4 and four color regions of {4,5,6,7}.

Although Scattered Superpage would affect the allocation,
promotion of superpages and might introduce fragmentation in
superpages (with unused color regions). This could be properly
handled, since the Scattered Superpage is flexible enough for
different workload scenarios. Actually the Scattered Superpage
is compatible with the regular Superpage: when each physical
superpage is configured to use all the available color regions
(with CR Entry=0 and CR Num=Total CR Num), it would act
the same as the regular superpage. Thus for LLC-interference
intensive workloads, fine-grained color region configuration
could be adopted to reduce LLC interference. And for other
workloads, coarse grained or even regular superpages could be
adopted to avoid fragmentation.

To support address translation for scattered superpage, each
huge TLB entry is extended to store the color region (CR) con-
figuration as shown in Figure 5. Besides the baseline Tag, Attr.
(page attributes), and Base Huge PPN (Base Huge Physical
Page Number), it needs a bit extra storage for CR Entry and
CR Num. This CR configuration is used to calculate physical
address when doing address translation.

B. Address Translation for Scattered Superpage

Figure 6 shows how the huge TLB does address translation
for a regular superpage. A virtual superpage address is divided

into two parts: Virtual Huge Page Number and Huge Page
Offset. The address translation needs two steps:

1) Searching: The Virtual Huge Page Number is used to
search in the huge TLB to check whether it is hit in huge
TLB. For set-associative TLB, it firstly indexes the target set
and then compares with all the Tags in the set. If it is a TLB
miss, it needs to fetch the target entry from page table (in
memory) through one or more page walks. After searching,
the corresponding Base Huge PPN (Physical Page Number) is
got.

2) Combining: To get the whole physical address, the
Base Huge PPN is used to combine with the original Huge
Page Offset (which puts Base Huge PPN in the most significant
part and puts Huge Page Offset in the least significant part). It
is noteworthy that the Huge Page Offset of a regular superpage
remains the same in both virtual address and physical address.

Thus, the physical address could be expressed as:

Physical Address = Base Huge PPN ⊕ 3

Huge Page Offset
(2)

It needs a little more effort to do address translation for a
scattered superpage. In virtual address, besides Virtual Huge
Page Number, the Huge Page Offset is further divided into
Scattered Shift and CR Offset as shown in Figure 7. The Scat-
tered Shift is used to index target physical superpage among
multiple scattered physical superpages, and it is determined by
the Scattered Num:

Scattered Shift = log(Scattered Num) (3)

For example, as shown in Figure 4(b), the Scattered Num
is configured as 2, thus the Scattered Shift is 1 (log(2)), and it
represents the most 1 significant bit of Huge Page Offset. If the
value of Scattered Shift bit is 0, it would be mapped into the
first scattered physical superpage; and if its value is 1, it would
be mapped into the second scattered physical superpage.

The address translation now needs three steps as shown in
Figure 7:

1) Searching: This is the same with regular superpage:
the Virtual Huge Page Number is used to search in huge TLB
to get the Base Huge PPN. In scattered superpage, the Base
Huge PPN represents the base Huge PPN of the first scattered
physical superpage.

2) Scattering: the CR configuration is fetched from the
target TLB entry, then it is used to calculate the Base CR
PPN, which represents the target Color Region base physical
address in target physical superpage. The Scattered Shift is
firstly determined based on equation (3) with CR Num, and
then it is used to index target physical superpage. In parallel,
the CR Entry is used to index the target base color region in
physical superpage.

3) Combining: The CR Offset is used to combine with the
target Base CR PPN to get the whole physical address. Thus
in scattered superpage, the Huge Page Offset is not contiguous
in physical address any more, but the CR Offset remains the
same both in virtual address and physical address.

3It represents combining operation.
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Fig. 7. Address translation for scattered superpage.

In conclusion, the physical address could be expressed as:

Physical Address =

(Base Huge PPN + val(Scattered Shift)) ⊕

CR Entry ⊕ CR Offset

(4)

Where val(Scattered Shift) represents the value of Scattered
Shift in the virtual address.

C. Overheads

Space Overhead: Each huge TLB entry needs to be
extended with extra storage for CR Configuration. We model
a 4-core system with 8 configurable color regions, thus the
number of bits of CR Entry is 3. Since we limit the CR Num
to be a power of two, it could be configured with 4 different
values (1,2,4 or 8), thus it just needs 2 bits for CR Num
(where 00 represents 1, 01 represents 2, 10 represents 4
and 11 represents 8). Thus the total number of bits for CR
Configuration is 5, and the total space overhead is only 160
bits for the 32-entry huge TLB in our system.

Latency Overhead: It needs an extra Scattering step when
doing address translation for scattered superpage, which re-
quires one addition operation and two combining operations as
shown in equation (4). The two combining operations could be

done in parallel with Combining step, thus the latency overhead
is only 1-cycle latency (for addition operation). A possible
optimization is to limit all the huge TLB entries in each TLB
Set to be configured with the same CR Configuration. After
indexing to the target TLB set, its CR Configuration could
be accessed ahead. Thus the Scattering step could be done in
parallel with tag comparison in the set, and no extra latency
overhead would be introduced. Furthermore the space overhead
could be reduced to 40 bits, because each set could share one
CR Configuration (it is 4-way huge TLB in our system, 160/4).

IV. EXPERIMENTAL METHODOLOGY

We use the MARSSx86 [30] full system cycle-accurate
simulator to model a four OoO (Out-of-Order) x86 cores
system. It has two-level cache, the L1-I (Instruction) and L1-D
(Data) cache is private and has a size of 128KB in each core.
The L2 data cache is shared among four cores, the size of it
is 4MB and it has 4K 16-way sets with a total of 64 available
page colors. In our simulation, we adopt the Linux kernel
2.6.32.12 which is modified to support page coloring tech-
nique. We add a separate 4-way set-associative huge TLB for
superpages as the baseline, and then we implement scattered
superpages on the huge TLB. Since this work is mainly focus
on last level cache and TLB performance, we adopt the simple
main memory model in simulation. The system configuration
is shown in Table I.

TABLE I. SYSTEM CONFIGURATION.

CPU Four 2.54GHz OoO cores, 4-wide issue, 128 entry reorder buffer

Caches

L1-I Cache: private, 128KB, 8-way, 64B cache line, 2-cycle latency

L1-D Cache: private, 128KB, 8-way, 64B cache line, 2-cycle latency

L2-D Cache: shared, 4MB, 16-way, 64B cache line, 14-cycle latency

TLB

ITLB for 4KB pages: private, 4-way, 256-entry

DTLB for 4KB pages: private, 4-way, 256-entry

huge DTLB for 2MB pages: private, 4-way, 32-entry

Memory Simple main memory model, 8GB, 64-bank, 130-cycle latency

We use multi-program memory-intensive workloads from
the SPEC CPU 2006 [2] benchmarks for the evaluation. We
run 16 groups of four-core workloads with one benchmark
dedicated to each core. The workloads are shown in table II.
All benchmarks are run with their reference (maximum size)
input. We first fast-forward 10 billion instructions of each
benchmark and then simulate total 1 billion instructions for
each workload.

TABLE II. WORKLOADS.

Workload LLC MPKI DTLB MPKI

WL1 hmmer, gcc, mcf, lbm 8.18 34.19

WL2 omnetpp, gcc, mcf, milc 9.11 40.53

WL3 astar, hmmer, lbm, milc 3.19 15.01

WL4 gcc, hmmer, milc, lbm 6.90 11.73

WL5 gcc, astar, lbm, mcf 8.65 44.65

WL6 soplex, gcc, lbm, mcf 5.51 12.04

WL7 soplex, hmmer, lbm, milc 1.98 16.45

WL8 hmmer, gcc, omnetpp, milc 12.80 7.88

WL9 soplex, astar, gcc, lbm 1.66 11.61

WL10 omnetpp, hmmer, mcf, lbm 4.48 18.40

WL11 gcc, astar, cactusADM, GemsFDTD 0.58 23.09

WL12 soplex, astar, mcf, cactusADM 6.70 46.20

WL13 soplex, hmmer, lbm, cactusADM 9.37 56.15

WL14 hmmer, gcc, cactusADM, mcf 2.56 17.90

WL15 soplex, gcc, milc, lbm 6.23 7.42

WL16 soplex, omnetpp, milc, lbm 5.27 12.61

MPKI represents Misses Per Kilo-Instruction
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Metrics: For multi-program workloads, we use Sys-
tem Throughput [27, 34] to evaluate system performance and
evaluate QoS in term of Unfairness [14, 28], which is the ratio
between the maximum slowdown and the minimum slowdown
among all processes sharing the last level cache:

Slowdowni =
IPCshared

i

IPCalone

i

(5)

System Throughput =
∑

i

Slowdowni (6)

Unfairness =
Maxi{Slowdowni}

Mini{Slowdowni}
(7)

V. EXPERIMENTAL RESULTS

We compare four different approaches to show the benefits
of scattered superpage:

• Original: each workload is run without any optimiza-
tion, which would encounter severe last level cache contention
and TLB miss, and this is served as the baseline.

• Page Coloring: each workload is run with page color-
ing optimization. We assign each application with intuitional
number of color regions in each workload based on the result
shown in Figure 3. It could only reduce cache contention.

• Superpage: all applications in each workload are run
with (2MB) superpage and thus use huge TLB for address
translation. Since the TLB is private in each core, there
is no inter-TLB-interference among cores. Superpage could
effectively reduce TLB miss, but it could not reduce cache
contention.

• Scattered Superpage: We use (2MB) superpage for all
applications in each workload, and assign intuitional number
of page colors for each application (as the same with Page
Coloring). It is able to reduce cache contention as well as to
reduce TLB miss.

A. Performance

Figure 8 shows the normalized performance speedup
of 4-core memory-intensive workloads in term of Sys-
tem Throughput, where the baseline is Original. We can see
that all the three optimizations could improve system perfor-
mance, and the average speedup for Page Coloring, Superpage
and Scattered Superpage is about 6.50%, 15.04% and 20.51%
respectively. Besides WL1 (workload), WL4 and WL7, all
the other workloads get higher performance speedup with
Super Page than with Page Coloring, and the Page Coloring
optimization shows small improvement for some workloads
(e.g. 2.00% for WL5, 2.55% for WL6, and 3.35% for WL9).
That is because in our experiments, we roughly chose page
color configuration based on Figure 3, and we did not tune
page color configuration to achieve the best speedup. The
speedup of Page Coloring would be higher after tuning. Super
Page optimization is effective for multi-program workloads,
besides WL4 and WL7, all the other workloads has a speedup
more than 10%. For all the workloads, the Scattered Superpage
has the largest speedup, because it could reduce both cache
contention and TLB miss. And the most speedup of Scattered
Superpage is about 29.94% for WL2.
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Fig. 9. The percentages of unfairness reduction of 4-core memory-intensive
workloads.

B. Unfairness

Figure 9 shows the percentage of unfairness reduction of
4-core memory-intensive workloads. We can see that Scattered
Superpage could reduce the maximum unfairness, and the av-
erage reduction is about 27.77%. While the average reduction
for Page Coloring and Superpage is about 12.43% and 15.64%
respectively. The WL10 had a maximum unfairness reduction,
it is about 69.29%, 34.46% and 73.17% for Page Coloring,
Superpage and Scattered Superpage respectively. This result
shows that Scattered Superpage could also effectively reduce
Unfairness among applications.

C. Cache Miss and TLB Miss Reduction

Figure 10 shows the shared L2 Cache (Last Level Cache)
miss reduction of 4-core memory-intensive workloads. We
can see that both the Page Coloring and Scattered Superpage
could reduce L2 Cache miss by about 25.75% and 17.05%
respectively. While Superpage has uncertain effect on L2
Cache, it might make worse for some workloads (e.g. -3.89%
for WL1, -9.45% for WL6 and -5.00% for WL16) or make
better for other workloads (e.g. 12.69% for WL3 and 16.91%
for WL9). The average reduction is about 1.74%, thus it is
unable to reduce cache contention. The probable reason for it
is that by adopting Superpage, it would affect physical memory
allocation (each superpage requires hundreds of contiguous
physical base pages) and thus affect memory access pattern
on L2 Cache.

Figure 11 shows the percentage of TLB miss reduction
of 4-core memory-intensive workloads. We can see that both
Superpage and Scattered Superpage could greatly reduce TLB
miss, and the average reduction is about 91.06% and 86.02%
respectively. The main reason for the difference of TLB miss
reduction is that Scattered Superpage would affect physical
superpage allocation (or layout) with page color controlling
and thus would affect the memory access pattern to superpage
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Fig. 10. The percentage of L2 cache miss reduction of 4-core memory-
intensive workloads.
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Fig. 11. The percentages of TLB miss reduction of 4-core memory-intensive
workloads.

TLB. And we can also see that Page Coloring has uncertain
effect on TLB miss, the average reduction of it is about
11.76%.

In conclusion, Scattered Superpage could reduce both
cache contention and TLB miss, which results in the best
performance improvement (20.51%).

VI. RELATED WORK

Superpage: Superpages offer a way to increase TLB cover-
age without increasing the number of TLB entries, which need
to be supported by OS [15, 29, 36, 37], recently transparent
hugepage support has been implemented in Linux system
[3]. Romer et al. [33] study several different policies for
dynamically creating superpages. Fang et al. [13] proposed
a hardware mechanism for dynamically creating superpages in
shadow address. A shadow superpage could be mapped to mul-
tiple arbitrary physical pages in memory controller, thus their
approach decoupled superpage from using multiple contiguous
physical pages. However in shadow address, a superpage was
still required to be contiguous. Since the shadow address was
used to index last level cache, it would still conflicted with
page coloring. Our work adds a simple address mapping in
huge TLB, which is able to bridge the gap between superpage
and page coloring.

Page Coloring: Page coloring was first proposed by Cho
and Jin [11] to manage data placement in a tiled CMP system.
Static page coloring was first implemented by Tam et al.
[38] for cache partition, and dynamic page coloring was
implemented by Lin et al. [21] which was based on page-
copying in (DRAM) memory. Lin et al. [20] further proposed a
low-overhead hardware-based cache management mechanism
to support flexible and effective page re-coloring by elimi-
nating page migration costs. Awasthi et al. [4] proposed a
hardware-centric mechanism to implement page migration at
low overheads while eliminating DRAM page copies within

a static-NUCA cache. They used shadow address spaces to
introduce another level of indirection before looking up the L2
cache. The TLB is modified to store New Page Color (NPC)
which is used to generate a new shadow address for cache
(indexing). Although our work also needs to slightly modify
huge TLB, our goal is to bridge the gap between superpage
and page coloring, while their work aimed at dynamic page-
recoloring in NUCA for base page (TLB), and they did
not take superpage into account. Hardavellas et al. proposed
Reactive NUCA [16] which explored OS control of cache
placement to optimize block placement in distributed caches,
and the page table was slightly extended to support page
classification. The Tilera TILEPro64 [6] adopted a software
configurable cache management approach for the home core
for a cache line. Soares et al. [35] dynamically re-mapped
cache unfriendly pages to a pollute buffer in cache based on
page coloring technique. Zhang et al. [40] proposed a hot-page
coloring approach to enforce coloring on only a small set of
frequently accessed pages. Ding et al. [12] proposed ULCC
which enabled programmers to optimize last level cache usage
at user level based on page coloring technique. Liu et al. [22]
extended the scope of software page coloring technology for
DRAM bank partition, which could efficiently alleviate bank-
level interference in multi-core systems. Page coloring could
also used to optimize object-level partition [23], Databases [19]
and HPC applications [31].

TLB Optimization: TLB is critical to overall system
performance. Bhattacharjee et al. [9] characterized TLB be-
havior on chip multiprocessors and then proposed Inter-core
cooperative TLB [10] and shared last level TLB [8, 24]. Pham
et al. [32] proposed CoLT to coalesce multiple virtual-to-
physical page translation into single TLB entries, which could
effectively eliminate TLB misses. Barr et al. [5] proposed
SpecTLB that provided speculative translations for many TLB
misses on small pages without referencing the page table,
which would effectively hide the execution latency of these
TLB misses. Zhang et al. [39] proposed Enigma that deferred
address translation until main memory needs to be accessed,
they introduced a new intermediate address (IA) space for
cache addressing and coherence traffic. Previous work also
evaluated TLB miss impact on high-end scientific applications
[25], future HPC system [26] and virtualization [7].

VII. CONCLUSION

In this paper, we first identify the gap between superpage
and page coloring in current hardware-architecture design, re-
sulting in the contradiction in adopting these two optimizations
simultaneously. To bridge this gap, we propose a lightweight
approach named Scattered Superpage: a superpage is remain
contiguous in virtual memory, but it is scattered mapping into
multiple physical superpages with using specified partial page
colors in each physical superpage. The huge TLB is slightly
modified to maintain color region configuration for each su-
perpage, and to calculate target physical address based on this
configuration. The experimental results show that Scattered
Superpage can improve system performance by 20.51% and
reduce unfairness by 27.77% due to the reduction of LLC
miss (17.05%) and TLB miss (86.02%). To the best of our
knowledge, this is the first work to leverage both superpage
and page coloring optimizations to improve both the TLB and
shared LLC performance.
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